Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982671

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the worldwide coronavirus disease 2019 (COVID-19) pandemic. Although the pathophysiology of SARS-CoV-2 infection is still being elucidated, the nicotinic cholinergic system may play a role. To evaluate the interaction of the SARS-CoV-2 virus with human nicotinic acetylcholine receptors (nAChRs), we assessed the in vitro interaction of the spike protein of the SARS-CoV-2 virus with various subunits of nAChRs. Electrophysiology recordings were conducted at α4ß2, α3ß4, α3α5ß4, α4α6ß2, and α7 neuronal nAChRs expressed in Xenopus oocytes. In cells expressing the α4ß2 or α4α6ß2 nAChRs, exposure to the 1 µg/mL Spike-RBD protein caused a marked reduction of the current amplitude; effects at the α3α5ß4 receptor were equivocal and effects at the α3ß4 and α7 receptors were absent. Overall, the spike protein of the SARS-CoV-2 virus can interact with select nAChRs, namely the α4ß2 and/or α4α6ß2 subtypes, likely at an allosteric binding site. The nAChR agonist varenicline has the potential to interact with Spike-RBD and form a complex that may interfere with spike function, although this effect appears to have been lost with the omicron mutation. These results help understand nAChR's involvement with acute and long-term sequelae associated with COVID-19, especially within the central nervous system.


Assuntos
COVID-19 , Receptores Nicotínicos , Humanos , Agonistas Nicotínicos/farmacologia , Vareniclina/farmacologia , Receptores Nicotínicos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
2.
PLoS One ; 12(9): e0184429, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886144

RESUMO

S 47445 is a novel positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPA-PAM). S 47445 enhanced glutamate's action at AMPA receptors on human and rat receptors and was inactive at NMDA and kainate receptors. Potentiation did not differ among the different AMPA receptors subtypes (GluA1/2/4 flip and flop variants) (EC50 between 2.5-5.4 µM), except a higher EC50 value for GluA4 flop (0.7 µM) and a greater amount of potentiation on GluA1 flop. A low concentration of S 47445 (0.1 µM) decreased receptor response decay time of GluA1flop/GluA2flip AMPA receptors and increased the sensitivity to glutamate. Furthermore, S 47445 (0.1 and 0.3 µM) in presence of repetitive glutamate pulses induced a progressive potentiation of the glutamate-evoked currents from the second pulse of glutamate confirming a rapid-enhancing effect of S 47445 at low concentrations. The potentiating effect of S 47445 (1 µM) was concentration-dependently reversed by the selective AMPA receptor antagonist GYKI52466 demonstrating the selective modulatory effect of S 47445 on AMPA receptors. Using an AMPA-kainate chimera approach, it was confirmed that S 47445 binds to the common binding pocket of AMPA-PAMs. S 47445 did not demonstrate neurotoxic effect against glutamate-mediated excitotoxicity in vitro, in contrast significantly protected rat cortical neurons at 10 µM. S 47445 was shown to improve both episodic and spatial working memory in adult rodents at 0.3 mg/kg, as measured in the natural forgetting condition of object recognition and T-maze tasks. Finally, no deleterious effect on spontaneous locomotion and general behavior was observed up to 1000 mg/kg of S 47445 given acutely in rodents, neither occurrence of convulsion or tremors. Collectively, these results indicate that S 47445 is a potent and selective AMPA-PAM presenting procognitive and potential neuroprotective properties. This drug is currently evaluated in clinical phase 2 studies in Alzheimer's disease and in Major Depressive Disorder.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptores de AMPA/agonistas , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Ácido Glutâmico/farmacologia , Humanos , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Receptores de AMPA/química , Xenopus
3.
Neuropharmacology ; 117: 422-433, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28259598

RESUMO

Tropisetron, a 5-HT3 receptor antagonist commonly prescribed for chemotherapy-induced nausea and vomiting also exhibits high affinity, partial agonist activity at α7 nicotinic acetylcholine receptors (α7 nAChRs). α7 nAChRs are considered viable therapeutic targets for neuropsychiatric disorders such as Alzheimer's disease (AD). Here we further explored the nAChR pharmacology of tropisetron to include the homomeric α7 nAChR and recently characterized heteromeric α7ß2 nAChR (1:10 ratio) and we evaluated its cognitive effects in young and aged animals. Electrophysiological studies on human nAChRs expressed in Xenopus oocytes confirmed the partial agonist activity of tropisetron at α7 nAChRs (EC50 ∼2.4 µM) with a similar effect at α7ß2 nAChRs (EC50 ∼1.5 µM). Moreover, currents evoked by irregular pulses of acetylcholine (40 µM) at α7 and α7ß2 nAChRs were enhanced during sustained exposure to low concentrations of tropisetron (10 and 30 nM) indicative of a "priming" or co-agonist effect. Tropisetron (0.1-10 mg/kg) improved novel object recognition performance in young Sprague-Dawley rats and in aged Fischer rats. In aged male and female rhesus monkeys, tropisetron (0.03-1 mg/kg) produced a 17% increase from baseline levels in delayed match to sample long delay accuracy while combination of non-effective doses of donepezil (0.1 mg/kg) and tropisetron (0.03 and 0.1 mg/kg) produced a 24% change in accuracy. Collectively, these animal experiments indicate that tropisetron enhances cognition and has the ability to improve the effective dose range of currently prescribed AD therapy (donepezil). Moreover, these effects may be explained by tropisetron's ability to sensitize α7 containing nAChRs to low levels of acetylcholine.


Assuntos
Acetilcolina/metabolismo , Indóis/farmacologia , Memória/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Nootrópicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/psicologia , Animais , Donepezila , Relação Dose-Resposta a Droga , Feminino , Humanos , Indanos/farmacologia , Macaca mulatta , Masculino , Memória/fisiologia , Oócitos , Piperidinas/farmacologia , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Tropizetrona , Xenopus laevis
4.
Proc Natl Acad Sci U S A ; 112(19): E2543-52, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918415

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential.


Assuntos
Sítio Alostérico , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica , Animais , Carbono/química , Cristalografia por Raios X , Humanos , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , Modelos Moleculares , Mutagênese , Oócitos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Nicotínicos/metabolismo , Ressonância de Plasmônio de Superfície , Torpedo , Difração de Raios X , Xenopus
5.
Nicotine Tob Res ; 17(3): 361-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25180076

RESUMO

INTRODUCTION: Genome-wide association studies linking the α3, ß4, and α5 nicotinic acetylcholine receptor (nAChR) subunits to nicotine dependence suggest that α3ß4* nAChR may be targets for smoking cessation pharmacotherapies. We previously reported that AT-1001, a selective α3ß4* nAChR ligand binds with high affinity to rat α3ß4 and human α3ß4α5 nAChR, antagonizes epibatidine-induced activation of rat α3ß4 nAChR in HEK cells and potently inhibits nicotine self-administration in rats. METHODS: Two-electrode voltage clamp was used for functional characterization of AT-1001 at recombinant human α3ß4 and α4ß2 nAChR expressed in Xenopus oocytes. RESULTS: Concentration-response curves show that AT-1001 is a partial agonist at human α3ß4 nAChR, evoking up to 35% of the maximal acetylcholine (ACh) response (50% effective concentration [EC50] = 0.37 µM). AT-1001 showed very little agonist activity at the α4ß2 nAChR, evoking only 6% of the ACh response (EC50 = 1.5 µM). Pre- and co-application of various concentrations of AT-1001 with 50 µM ACh revealed a complex pattern of activation-inhibition by AT-1001 at α3ß4 nAChR, which was best fitted by a 2-site equation. At α4ß2 nAChR, co-exposure of AT-1001 with ACh only showed inhibition of ACh current with a shallower curve. CONCLUSIONS: AT-1001 is a partial agonist at the human α3ß4 nAChR and causes desensitization at concentrations at which it evokes an inward current, resulting in an overall functional antagonism of α3ß4 nAChR. AT-1001 does not significantly activate or desensitize α4ß2 nAChR at the same concentrations as at the α3ß4 nAChR, but does inhibit ACh responses at α4ß2 nAChR at higher concentrations. A combination of these mechanisms may underlie the inhibition of nicotine self-administration by AT-1001, suggesting that AT-1001 and compounds from this class may have clinical potential for smoking cessation pharmacotherapy.


Assuntos
Oligopeptídeos/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Feminino , Humanos , Ligantes , Xenopus laevis
6.
ACS Chem Neurosci ; 5(5): 346-59, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24593915

RESUMO

While a plethora of ligands are known for the well studied α7 and α4ß2 nicotinic acetylcholine receptor (nAChR), only very few ligands address the related α3ß2 nAChR expressed in the central nervous system and at the neuromuscular junction. Starting with the public database ChEMBL organized in the chemical space of Molecular Quantum Numbers (MQN, a series of 42 integer value descriptors of molecular structure), a visual survey of nearest neighbors of the α7 nAChR partial agonist N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide (PNU-282,987) pointed to N-(2-halobenzyl)-3-aminoquinuclidines as possible nAChR modulators. This simple "chemical space walk" was performed using a web-browser available at www.gdb.unibe.ch . Electrophysiological recordings revealed that these ligands represent a new and to date most potent class of positive allosteric modulators (PAMs) of the α3ß2 nAChR, which also exert significant effects in vivo. The present discovery highlights the value of surveying chemical space neighbors of known drugs within public databases to uncover new pharmacology.


Assuntos
Bases de Dados de Compostos Químicos , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Regulação Alostérica , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Relação Dose-Resposta a Droga , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Modelos Químicos , Agonistas Nicotínicos/farmacologia , Xenopus laevis
7.
J Biol Chem ; 288(12): 8355-8364, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23364792

RESUMO

Pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine, glycine, γ-aminobutyric acid GABA(A/C) receptors, and the Gloeobacter violaceus ligand-gated ion channel (GLIC), are receptors that contain multiple allosteric binding sites for a variety of therapeutics, including general anesthetics. Here, we report the x-ray crystal structure of the Erwinia chrysanthemi ligand-gated ion channel (ELIC) in complex with a derivative of chloroform, which reveals important features of anesthetic recognition, involving multiple binding at three different sites. One site is located in the channel pore and equates with a noncompetitive inhibitor site found in many pLGICs. A second transmembrane site is novel and is located in the lower part of the transmembrane domain, at an interface formed between adjacent subunits. A third site is also novel and is located in the extracellular domain in a hydrophobic pocket between the ß7-ß10 strands. Together, these results extend our understanding of pLGIC modulation and reveal several specific binding interactions that may contribute to modulator recognition, further substantiating a multisite model of allosteric modulation in this family of ion channels.


Assuntos
Anestésicos Inalatórios/química , Proteínas de Bactérias/química , Dickeya chrysanthemi , Canais Iônicos de Abertura Ativada por Ligante/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Clorofórmio/química , Clorofórmio/farmacologia , Cristalografia por Raios X , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Trialometanos/química , Trialometanos/farmacologia , Xenopus laevis
8.
Proc Natl Acad Sci U S A ; 109(44): E3028-34, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23035248

RESUMO

GABA(A) receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA(A) receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their concentration, occupy two possible sites in ELIC. An intrasubunit site is adjacent to the GABA-recognition site but faces the channel vestibule. A second intersubunit site partially overlaps with the GABA site and likely corresponds to a low-affinity benzodiazepine-binding site in GABA(A) receptors that mediates inhibitory effects of the benzodiazepine flurazepam. Our study offers a structural view how GABA and benzodiazepines are recognized at a GABA-activated ion channel.


Assuntos
Benzodiazepinas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Benzodiazepinas/metabolismo , Sítios de Ligação , Biopolímeros , Cristalografia por Raios X , Canais Iônicos/química , Ligantes , Modelos Moleculares , Receptores de GABA-A/metabolismo , Xenopus
9.
J Med Chem ; 55(10): 4605-18, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22591063

RESUMO

The Chemical Universe Generated Databases up to 11 atoms of CNOF (GDB-11) and up to 13 atoms of CNOClS (GDB-13) were used to enumerate analogues of the diamine part of two known α7 nicotinic receptor agonists and construct libraries of virtual analogues of these drugs. The libraries were scored using structure-based (docking to the nicotine binding site of the acetylcholine binding protein 1uw6.pdb) or ligand-based (similarity to the parent drugs) methods, and the top-scoring virtual ligands were inspected for easily accessible synthetic targets. In total, 21 diamines were prepared and acylated with aromatic carboxylic or oxycarbonic acids to produce 85 analogues of the parent drugs. The compounds were profiled by electrophysiology in Xenopus oocytes expressing human nicotinic acetylcholine receptor (nAChR) subtypes α7, α3ß2, α4ß2, α3ß4, or α4ß4. Characterization of selected compounds revealed eight inhibitors of the α7 nicotinic receptor and three positive allosteric modulators of the α3ß2 nAChR.


Assuntos
Benzamidas/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/síntese química , Agonistas Nicotínicos/síntese química , Antagonistas Nicotínicos/síntese química , Regulação Alostérica , Animais , Benzamidas/química , Benzamidas/farmacologia , Sítios de Ligação , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bases de Dados Factuais , Feminino , Humanos , Modelos Moleculares , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Xenopus
10.
Seizure ; 21(2): 118-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22036597

RESUMO

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a rare familial seizure disorder caused by mutations in at least two different subunit genes of the neuronal nicotinic acetylcholine receptor (nAChR), CHRNA4 and CHRNB2. ADNFLE was initially described as a "pure" seizure disorder with a mostly benign course. We have analysed the clinical features of 19 ADNFLE families from 12 countries with a total of 150 patients and grouped them with respect to their nAChR mutations. These data suggest that certain nAChR mutations might be associated with an increased risk for major neurological symptoms such as mental retardation, schizophrenia-like symptoms or marked cognitive deficits, but the risk for these disorders seems to be low for most other ADNFLE mutations. The functional data confirm that the mutations differ from each other with respect to the size of their gain-of function effects and other biopharmacological characteristics although these functional changes are not predictive for the severity of the clinical phenotype.


Assuntos
Epilepsia do Lobo Frontal/diagnóstico , Epilepsia do Lobo Frontal/genética , Mutação/genética , Receptores Nicotínicos/genética , Feminino , Humanos , Masculino , Transtornos Mentais/genética , Fenótipo , Receptores Nicotínicos/fisiologia
11.
Neuropharmacology ; 62(2): 1099-110, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22085888

RESUMO

EVP-6124, (R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide, is a novel partial agonist of α7 neuronal nicotinic acetylcholine receptors (nAChRs) that was evaluated here in vitro and in vivo. In binding and functional experiments, EVP-6124 showed selectivity for α7 nAChRs and did not activate or inhibit heteromeric α4ß2 nAChRs. EVP-6124 had good brain penetration and an adequate exposure time. EVP-6124 (0.3 mg/kg, p.o.) significantly restored memory function in scopolamine-treated rats (0.1 mg/kg, i.p.) in an object recognition task (ORT). Although donepezil at 0.1 mg/kg, p.o. or EVP-6124 at 0.03 mg/kg, p.o. did not improve memory in this task, co-administration of these sub-efficacious doses fully restored memory. In a natural forgetting test, an ORT with a 24 h retention time, EVP-6124 improved memory at 0.3 mg/kg, p.o. This improvement was blocked by the selective α7 nAChR antagonist methyllycaconitine (0.3 mg/kg, i.p. or 10 µg, i.c.v.). In co-application experiments of EVP-6124 with acetylcholine, sustained exposure to EVP-6124 in functional investigations in oocytes caused desensitization at concentrations greater than 3 nM, while lower concentrations (0.3-1 nM) caused an increase in the acetylcholine-evoked response. These actions were interpreted as representing a co-agonist activity of EVP-6124 with acetylcholine on α7 nAChRs. The concentrations of EVP-6124 that resulted in physiological potentiation were consistent with the free drug concentrations in brain that improved memory performance in the ORT. These data suggest that the selective partial agonist EVP-6124 improves memory performance by potentiating the acetylcholine response of α7 nAChRs and support new therapeutic strategies for the treatment of cognitive impairment. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.


Assuntos
Encéfalo/efeitos dos fármacos , Memória/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Quinuclidinas/farmacologia , Receptores Nicotínicos/metabolismo , Tiofenos/farmacologia , Animais , Encéfalo/metabolismo , Inibidores da Colinesterase/farmacologia , Donepezila , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Indanos/farmacologia , Masculino , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor Nicotínico de Acetilcolina alfa7
12.
J Chem Inf Model ; 51(12): 3105-12, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22077916

RESUMO

The chemical universe database GDB-13 enumerates 977 million organic molecules up to 13 atoms of C, N, O, Cl, and S that are virtually possible following simple rules for chemical stability and synthetic feasibility. Analogs of nicotine were identified in GDB-13 using the city-block distance in MQN-space (CBD(MQN)) as a similarity measure, combined with a restriction eliminating problematic structural elements. The search was carried out with a Web browser available at www.gdb.unibe.ch . This virtual screening procedure selected 31 504 analogs of nicotine from GDB-13, from which 48 were known nicotinic ligands reported in Chembl. An additional 60 virtual screening hits were purchased and tested for modulation of the acetylcholine signal at the human α7 nAChR expressed in Xenopus oocytes, which led to the identification of three previously unknown inhibitors. These experiments demonstrate for the first time the use of GDB-13 for ligand discovery.


Assuntos
Descoberta de Drogas , Receptores Nicotínicos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Bases de Dados Factuais , Expressão Gênica , Humanos , Ligantes , Proteínas Motores Moleculares , Receptores Nicotínicos/genética , Xenopus , Receptor Nicotínico de Acetilcolina alfa7
13.
Bioorg Med Chem ; 19(20): 6107-19, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21920761

RESUMO

Hierarchical in silico screening protocols against the agonist bound acetylcholine binding protein (AChBP) crystal structure were efficient in identifying novel chemotypes for AChBP and the human α7 receptor. Two hit structures were cocrystallized with AChBP revealing intermolecular cation-π interactions with loop C but lacking intermolecular hydrogen bonding. The compounds act as competitive α7 receptor antagonists and as non-competitive α4ß2 receptor inhibitors. These results underline the usability of AChBP in structure-based in silico screening strategies in finding novel scaffolds for the α7 receptor, but also illustrates some limitations of using AChBP as bait to find competitive α4ß2 receptor ligands and α7 receptor agonists.


Assuntos
Proteínas de Transporte/química , Agonistas Nicotínicos/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Ligação Proteica , Conformação Proteica , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
14.
FASEB J ; 25(11): 3775-89, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21778325

RESUMO

α6ß2* Nicotinic acetylcholine receptors are expressed in selected central nervous system areas, where they are involved in striatal dopamine (DA) release and its behavioral consequences, and other still uncharacterized brain activities. α6ß2* receptors are selectively blocked by the α-conotoxins MII and PIA, which bear a characteristic N-terminal amino acid tail [arginine (R), aspartic acid (D), and proline (P)]. We synthesized a group of PIA-related peptides in which R1 was mutated or the RDP motif gradually removed. Binding and striatal DA release assays of native rat α6ß2* receptors showed that the RDP sequence, and particularly residue R1, is essential for the activity of PIA. On the basis of molecular modeling analyses, we synthesized a hybrid peptide (RDP-MII) that had increased potency (7-fold) and affinity (13-fold) for α6ß2* receptors but not for the very similar α3ß2* subtype. As docking studies also suggested that E11 of MII might be a key residue engendering α6ß2* vs. α3ß2* selectivity, we prepared MII[E11R] and RDP-MII[E11R] peptides. Their affinity and potency for native α6ß2* receptors were similar to those of their parent analogues, whereas, for the oocyte expressed rat α3ß2* subtype, they showed a 31- and 14-fold lower affinity and 21- and 3.5-fold lower potency. Thus, MII[E11R] and RDP-MII[E11R] are potent antagonists showing a degree of α6ß2* vs. α3ß2* selectivity in vivo.


Assuntos
Conotoxinas/química , Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Conotoxinas/genética , Conotoxinas/metabolismo , Masculino , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Engenharia de Proteínas , Ratos , Ratos Sprague-Dawley
15.
Antimicrob Agents Chemother ; 54(12): 5399-402, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20855733

RESUMO

Adverse effects have limited the clinical use of telithromycin. Preferential inhibition of the nicotinic acetylcholine receptors (nAChR) at the neuromuscular junction (α3ß2 and NMJ), the ciliary ganglion of the eye (α3ß4 and α7), and the vagus nerve innervating the liver (α7) could account for the exacerbation of myasthenia gravis, the visual disturbance, and the liver failure seen with telithromycin use. The studies presented here enable the prediction of expected side effects of macrolides in development, such as solithromycin (CEM-101).


Assuntos
Antibacterianos/efeitos adversos , Cetolídeos/efeitos adversos , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Animais , Antibacterianos/uso terapêutico , Corpo Ciliar/efeitos dos fármacos , Corpo Ciliar/metabolismo , Humanos , Cetolídeos/química , Cetolídeos/uso terapêutico , Estrutura Molecular , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Oócitos , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Xenopus laevis
16.
ACS Med Chem Lett ; 1(8): 422-6, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24900227

RESUMO

Virtual analogues (1167860 compounds) of the nicotinic α7-receptor (α7 nAChR) ligands PNU-282,987 and SSR180711 were generated from the chemical universe database GDB-11 by extracting all aliphatic diamine analogues of the aminoquinuclidine and 1,4-diazabicyclo[3.2.2]nonane scaffolds of these ligands and converting them to the corresponding aryl amides using five different aromatic acyl groups. The library was ranked by docking to the nicotinic binding site of the acetylcholine binding protein (AChBP, 1UW6.pdb) using Autodock and Glide. Thirty-eight ligands derived from the best docking hits were synthesized and tested for modulation of the acetylcholine signal at the human α7 nAChR receptor expressed in Xenopus oocytes, leading to competitive and noncompetitive antagonists with IC50 = 5-7 µM. These experiments demonstrate the first example of using GDB in a fragment-based approach by diversifying the scaffold of known drugs.

17.
J Med Chem ; 52(8): 2372-83, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19331415

RESUMO

Acetylcholine binding protein (AChBP) is widely considered as a functional and structural homologue of the ligand binding domain of Cys-loop receptors. We report the use of AChBP as template to identify ligands for the nicotinic receptors (nAChRs). An in silico screening protocol was set up and applied to crystal structures of AChBP. Several ligands containing a dibenzosuberyl moiety were identified and shown to bind with high affinity to AChBP and alpha7 nAChRs. Two high affinity ligands were cocrystallized with AChBP, revealing the binding mode in the orthosteric site. Functional studies revealed that these two ligands caused inhibition of the alpha7, alpha4beta2, and 5HT(3) receptors. The noncompetive blockade of the receptors suggests that these compounds act by steric hindrance of the channel. The analysis of the dual binding mode of these dibenzosuberyl-containing compounds can lead to better understanding of the complex mode of action of similar tricyclic ligands on Cys-loop receptors.


Assuntos
Proteínas de Transporte/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Bases de Dados Factuais , Feminino , Humanos , Técnicas In Vitro , Ligantes , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Conformação Proteica , Ensaio Radioligante , Receptores Nicotínicos/fisiologia , Antagonistas do Receptor 5-HT3 de Serotonina , Xenopus , Receptor Nicotínico de Acetilcolina alfa7
18.
Bioorg Med Chem Lett ; 19(14): 3832-5, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19394821

RESUMO

Docking of randomly selected compounds from the chemical universe database GDB-11, which contains all organic molecules up to 11 atoms of C, N, O, F possible under consideration of simple chemical stability and synthetic feasibility rules, into the NMDA receptor glycine site (1pb7.pdb) lead to the identification of 3-(aminomethyl)piperazine-2,5-dione 3 and its close analog 5-(aminomethyl)piperazine-2,3-dione 4 as possible new ligands for this drug target, which is implicated in synaptic plasticity, neuronal development, learning and memory. Synthesis of these compounds in 4 and 6 steps, respectively, and testing by radioligand displacement assays and electrophysiological measurements in Xenopus oocytes show that while 4 is inactive, 3 is indeed an inhibitor of glycine, with an estimated K(D) of 50 microM.


Assuntos
Dicetopiperazinas/química , Glicina/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Sítios de Ligação , Simulação por Computador , Bases de Dados Factuais , Dicetopiperazinas/síntese química , Dicetopiperazinas/farmacologia , Oócitos/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Software , Termodinâmica , Xenopus laevis
20.
Mol Pharmacol ; 74(5): 1407-16, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18678621

RESUMO

The alpha7 nicotinic acetylcholine receptor (nAChR), a homopentameric, rapidly activating and desensitizing ligand-gated ion channel with relatively high degree of calcium permeability, is expressed in the mammalian central nervous system, including regions associated with cognitive processing. Selective agonists targeting the alpha7 nAChR have shown efficacy in animal models of cognitive dysfunction. Use of positive allosteric modulators selective for the alpha7 receptor is another strategy that is envisaged in the design of active compounds aiming at improving attention and cognitive dysfunction. The recent discovery of novel positive allosteric modulators such as 1-(5-chloro-2-hydroxyphenyl)-3-(2-chloro-5-trifluoromethylphenyl)urea (NS-1738) and 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)urea (PNU-120596) that are selective for the alpha7 nAChRs but display significant phenotypic differences in their profile of allosteric modulation, suggests that these molecules may act at different sites on the receptor. Taking advantage of the possibility to obtain functional receptors by the fusion of proteins domains from the alpha7 and the 5-HT(3) receptor, we examined the structural determinants required for positive allosteric modulation. This strategy revealed that the extracellular N-terminal domain of alpha7 plays a critical role in allosteric modulation by NS-1738. In addition, alpha7-5HT(3) chimeras harboring the M2-M3 segment showed that spontaneous activity in response to NS-1738, which confirmed the critical contribution of this small extracellular segment in the receptor gating. In contrast to NS-1738, positive allosteric modulation by PNU-120596 could not be restored in the alpha7-5HT(3) chimeras but was selectively observed in the reverse 5HT(3)-alpha7 chimera. All together, these data illustrate the existence of distinct allosteric binding sites with specificity of different profiles of allosteric modulators and open new possibilities to investigate the alpha7 receptor function.


Assuntos
Receptores Nicotínicos/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Primers do DNA , Feminino , Ligantes , Dados de Sequência Molecular , Receptores Nicotínicos/química , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...