Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36850765

RESUMO

Radiation detectors based on Cadmium Zinc Telluride (CZT) compounds are becoming popular solutions thanks to their high detection efficiency, room temperature operation, and to their reliability in compact detection systems for medical, astrophysical, or industrial applications. However, despite a huge effort to improve the technological process, CZT detectors' full potential has not been completely exploited when both high spatial and energy resolution are required by the application, especially at low energies (<10 keV), limiting their application in energy-resolved photon counting (ERPC) systems. This gap can also be attributed to the lack of dedicated front-end electronics which can bring out the best in terms of detector spectroscopic performances. In this work, we present the latest results achieved in terms of energy resolution using SIRIO, a fast low-noise charge sensitive amplifier, and a linear-array pixel detector, based on boron oxide encapsulated vertical Bridgman-grown B-VB CZT crystals. The detector features a 0.25-mm pitch, a 1-mm thickness and is operated at a -700-V bias voltage. An equivalent noise charge of 39.2 el. r.m.s. (corresponding to 412 eV FWHM) was measured on the test pulser at 32 ns peaking time, leading to a raw resolution of 1.3% (782 eV FWHM) on the 59 keV line at room temperature (+20 °C) using an uncollimated 241Am, largely improving the current state of the art for CZT-based detection systems at such short peaking times, and achieving an optimum resolution of 0.97% (576 eV FWHM) at 1 µs peaking time. The measured energy resolution at the 122 keV line and with 1 µs peaking time of a 57Co raw uncollimated spectrum is 0.96% (1.17 keV). These activities are in the framework of an Italian collaboration on the development of energy-resolved X-ray scanners for material recycling, medical applications, and non-destructive testing in the food industry.

2.
J Acoust Soc Am ; 151(3): 2066, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35364934

RESUMO

The electro-mechano-acoustical (EMA) analogy, introduced in the early 1900s, allows for the modeling of mechanical, acoustical, and EMA devices and systems using schematics of basic electrical elements, making possible the application of the well-established electrical network theory for studying, designing, and characterizing complex systems. By means of this elegant modeling, the behavior of intrinsically heterogeneous devices, such as microphones and loudspeaker drivers and systems, can be explained in each of the three domains and the mutual interactions between the electrical, mechanical, and acoustical parts can be precisely predicted. However, an open issue remains still unsolved: in all publications and textbooks, the EMA analogy has been always introduced only from the formal similarity of the equations describing the physical laws that regulate the basic EMA elements and a lack of insight into its physical fundamentals can be remarked. In this paper, an investigation on the existence of physical origins of the correspondences and similarities between the quantities and the laws describing the elements of electrical, mechanical, and acoustical domains is proposed and discussed. Historical research on the birth of EMA analogy theory with the fundamental contributions on its development given by the scientists and engineers is presented as well.

3.
J Synchrotron Radiat ; 28(Pt 6): 1811-1819, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738934

RESUMO

X-ray absorption fine-structure (XAFS) spectroscopy can assess the chemical speciation of the elements providing their coordination and oxidation state, information generally hidden to other techniques. In the case of trace elements, achieving a good quality XAFS signal poses several challenges, as it requires high photon flux, counting statistics and detector linearity. Here, a new multi-element X-ray fluorescence detector is presented, specifically designed to probe the chemical speciation of trace 3d elements down to the p.p.m. range. The potentialities of the detector are presented through a case study: the speciation of ultra-diluted elements (Fe, Mn and Cr) in geological rocks from a calcareous formation related to the dispersal processes from Ontong (Java) volcanism (mid-Cretaceous). Trace-elements speciation is crucial in evaluating the impact of geogenic and anthropogenic harmful metals on the environment, and to evaluate the risks to human health and ecosystems. These results show that the new detector is suitable for collecting spectra of 3d elements in trace amounts in a calcareous matrix. The data quality is high enough that quantitative data analysis could be performed to determine their chemical speciation.


Assuntos
Oligoelementos , Ecossistema , Teste de Esforço , Humanos , Metais , Oligoelementos/análise , Espectroscopia por Absorção de Raios X
4.
Micromachines (Basel) ; 10(12)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801210

RESUMO

Compared with the most commonly used silicon and germanium, which need to work at cryogenic or low temperatures to decrease their noise levels, wide-bandgap compound semiconductors such as silicon carbide allow the operation of radiation detectors at room temperature, with high performance, and without the use of any bulky and expensive cooling equipment. In this work, we investigated the electrical and spectroscopic performance of an innovative position-sensitive semiconductor radiation detector in epitaxial 4H-SiC. The full depletion of the epitaxial layer (124 µm, 5.2 × 1013 cm-3) was reached by biasing the detector up to 600 V. For comparison, two different microstrip detectors were fully characterized from -20 °C to +107 °C. The obtained results show that our prototype detector is suitable for high resolution X-ray spectroscopy with imaging capability in a wide range of operating temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...