Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Invest Ophthalmol Vis Sci ; 62(15): 13, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913948

RESUMO

Purpose: Proper refractive development of the eye, termed emmetropization, is critical for focused vision and is impacted by both genetic determinants and several visual environment factors. Improper emmetropization caused by genetic variants can lead to congenital hyperopia, which is characterized by small eyes and relatively short ocular axial length. To date, variants in only four genes have been firmly associated with human hyperopia, one of which is MFRP. Zebrafish mfrp mutants also have hyperopia and, similar to reports in mice, exhibit increased macrophage recruitment to the retina. The goal of this research was to examine the effects of macrophage ablation on emmetropization and mfrp-related hyperopia. Methods: We utilized a chemically inducible, cell-specific ablation system to deplete macrophages in both wild-type and mfrp mutant zebrafish. Spectral-domain optical coherence tomography was then used to measure components of the eye and determine relative refractive state. Histology, immunohistochemistry, and transmission electron microscopy were used to further study the eyes. Results: Although macrophage ablation does not cause significant changes to the relative refractive state of wild-type zebrafish, macrophage ablation in mfrp mutants significantly exacerbates their hyperopic phenotype, resulting in a relative refractive error 1.3 times higher than that of non-ablated mfrp siblings. Conclusions: Genetic inactivation of mfrp leads to hyperopia, as well as abnormal accumulation of macrophages in the retina. Ablation of the mpeg1-positive macrophage population exacerbates the hyperopia, suggesting that macrophages may be recruited in an effort help preserve emmetropization and ameliorate hyperopia.


Assuntos
Proteínas do Olho/genética , Hiperopia/fisiopatologia , Macrófagos/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Anti-Infecciosos/farmacologia , Apoptose , Proliferação de Células , Colágeno/metabolismo , Colágeno/ultraestrutura , Emetropia/fisiologia , Hiperopia/diagnóstico por imagem , Hiperopia/genética , Imuno-Histoquímica , Metronidazol/farmacologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fenótipo , Refração Ocular , Esclera/metabolismo , Esclera/ultraestrutura , Tomografia de Coerência Óptica , Peixe-Zebra
3.
Pain Rep ; 4(4): e765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579856

RESUMO

INTRODUCTION: Many patients with sickle cell disease (SCD) suffer from chronic pain, which is often described as neuropathic in nature. Although vascular and inflammatory pathology undoubtedly contribute to the SCD pain experience, the nociceptive signals that ultimately drive symptoms are detected and transmitted by peripheral sensory neurons. To date, no systematic histological examination of peripheral nerves has been completed in patients or mouse models of SCD to diagnose disease-related neuropathy. OBJECTIVES: In this brief report, we compared peripheral nerve morphology in tissues obtained from Berkeley transgenic SCD mice and control animals. METHODS: Sciatic nerves were visualized using light and transmission electron microscopy. Myelin basic protein expression was assessed through Western blot. Blood-nerve barrier permeability was measured using Evan's blue plasma extravasation. RESULTS: Peripheral fibers from SCD mice have thinner myelin sheaths than control mice and widespread myelin instability as evidenced by myelin sheath infolding and unwrapping. Deficits are also observed in nonmyelinating Schwann cell structures; Remak bundles from SCD nerves contain fewer C fibers, some of which are not fully ensheathed by the corresponding Schwann cell. Increased blood-nerve barrier permeability and expression of myelin basic protein are noted in SCD tissue. CONCLUSIONS: These data are the first to characterize Berkeley SCD mice as a naturally occurring model of peripheral neuropathy. Widespread myelin instability is observed in nerves from SCD mice. This pathology may be explained by increased permeability of the blood-nerve barrier and, thus, increased access to circulating demyelinating agents at the level of primary sensory afferents.

4.
Proc Natl Acad Sci U S A ; 116(26): 13087-13096, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189593

RESUMO

Progressive rod-cone degeneration (PRCD) is a small protein residing in the light-sensitive disc membranes of the photoreceptor outer segment. Until now, the function of PRCD has remained enigmatic despite multiple demonstrations that its mutations cause blindness in humans and dogs. Here, we generated a PRCD knockout mouse and observed a striking defect in disc morphogenesis, whereby newly forming discs do not properly flatten. This leads to the budding of disc-derived vesicles, specifically at the site of disc morphogenesis, which accumulate in the interphotoreceptor matrix. The defect in nascent disc flattening only minimally alters the photoreceptor outer segment architecture beyond the site of new disc formation and does not affect the abundance of outer segment proteins and the photoreceptor's ability to generate responses to light. Interestingly, the retinal pigment epithelium, responsible for normal phagocytosis of shed outer segment material, lacks the capacity to clear the disc-derived vesicles. This deficiency is partially compensated by a unique pattern of microglial migration to the site of disc formation where they actively phagocytize vesicles. However, the microglial response is insufficient to prevent vesicular accumulation and photoreceptors of PRCD knockout mice undergo slow, progressive degeneration. Taken together, these data show that the function of PRCD is to keep evaginating membranes of new discs tightly apposed to each other, which is essential for the high fidelity of photoreceptor disc morphogenesis and photoreceptor survival.


Assuntos
Proteínas de Membrana/deficiência , Morfogênese/genética , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Animais , Membrana Celular/metabolismo , Membrana Celular/patologia , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestrutura , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Distrofias de Cones e Bastonetes/veterinária , Modelos Animais de Doenças , Cães , Espaço Extracelular/metabolismo , Proteínas do Olho/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
5.
J Ocul Pharmacol Ther ; 35(5): 278-282, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916605

RESUMO

Purpose: Aflibercept (Eylea™, Regeneron) is supplied in single-use glass vials along with 1 cc polycarbonate syringes. We sought to determine if storage of aflibercept for sustained periods within these syringes would result in loss of antivascular endothelial growth factor (anti-VEGF) activity. Methods: Aflibercept samples were drawn from commercially available glass vials into manufacturer-supplied 1-mL syringes and stored at 4°C. Anti-VEGF activity was assessed using enzyme-linked immunosorbent assays at the following storage durations: 0, 4, 9, 14, and 28 days. Frozen samples stored at -20°C for 28 and 56 days were also assayed. Also, a subset of aflibercept samples was stored and then diluted to 1:10 and progressively smaller concentrations and the assays repeated. Aggregation of aflibercept was tested using a dynamic light scattering assay. Results: There were no statistical differences in anti-VEGF activity among aflibercept samples of 1:1 or 1:10 dilution stored at either 4°C or -20°C at any of the storage intervals (P > 0.05). We also observed persistence of robust anti-VEGF activity for up to 14 days when diluted poststorage to 1:16,000, a concentration that would be expected after >7 vitreous half-lives within the eye (estimated at >50 days). No evidence of drug aggregation in specimens stored for 14 days was observed. Conclusions: Our findings support feasibility of prefilling and storage of aflibercept within manufacturer-supplied polycarbonate syringes for as long as 14 days before use under pharmacy-based sterile conditions, facilitating greater safety and efficiency in many clinics delivering anti-VEGF therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Cimento de Policarboxilato/química , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/efeitos adversos , Inibidores da Angiogênese/química , Armazenamento de Medicamentos , Humanos , Injeções Intravítreas , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/química
6.
BMC Cell Biol ; 19(1): 25, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458707

RESUMO

BACKGROUND: KIF17, a kinesin-2 motor that functions in intraflagellar transport, can regulate the onset of photoreceptor outer segment development. However, the function of KIF17 in a mature photoreceptor remains unclear. Additionally, the ciliary localization of KIF17 is regulated by a C-terminal consensus sequence (KRKK) that is immediately adjacent to a conserved residue (mouse S1029/zebrafish S815) previously shown to be phosphorylated by CaMKII. Yet, whether this phosphorylation can regulate the localization, and thus function, of KIF17 in ciliary photoreceptors remains unknown. RESULTS: Using transgenic expression in zebrafish photoreceptors, we show that phospho-mimetic KIF17 has enhanced localization along the cone outer segment. Importantly, expression of phospho-mimetic KIF17 is associated with greatly enhanced turnover of the photoreceptor outer segment through disc shedding in a cell-autonomous manner, while genetic mutants of kif17 in zebrafish and mice have diminished disc shedding. Lastly, cone expression of constitutively active tCaMKII leads to a kif17-dependent increase in disc shedding. CONCLUSIONS: Taken together, our data support a model in which phosphorylation of KIF17 promotes its photoreceptor outer segment localization and disc shedding, a process essential for photoreceptor maintenance and homeostasis. While disc shedding has been predominantly studied in the context of the mechanisms underlying phagocytosis of outer segments by the retinal pigment epithelium, this work implicates photoreceptor-derived signaling in the underlying mechanisms of disc shedding.


Assuntos
Cinesinas/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Cílios/metabolismo , Humanos , Cinesinas/química , Camundongos Endogâmicos C57BL , Mutação/genética , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Fosforilação , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Proteínas de Peixe-Zebra/química
7.
Mol Biol Cell ; 29(2): 180-190, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142075

RESUMO

Teleosts and amphibians exhibit retinomotor movements, morphological changes in photoreceptors regulated by light and circadian rhythms. Cone myoid elongation occurs during dark adaptation, leading to the positioning of the cone outer segment closer to the retinal pigment epithelium. Although it has been shown that microtubules are essential for cone myoid elongation, the underlying mechanism has not been established. In this work, we generated a transgenic line of zebrafish expressing a photoconvertible form of α-tubulin (tdEOS-tubulin) specifically in cone photoreceptors. Using superresolution structured illumination microscopy in conjunction with both pharmacological and genetic manipulation, we show that cytoplasmic dynein-1, which localizes to the junction between the ellipsoid and myoid, functions to shuttle microtubules from the ellipsoid into the myoid during the course of myoid elongation. We propose a novel model by which stationary complexes of cytoplasmic dynein-1 are responsible for the shuttling of microtubules between the ellipsoid and myoid is the underlying force for the morphological change of myoid elongation.


Assuntos
Dineínas do Citoplasma/fisiologia , Microtúbulos/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Peixe-Zebra/anatomia & histologia , Animais , Animais Geneticamente Modificados , Adaptação à Escuridão , Microtúbulos/ultraestrutura , Nocodazol/farmacologia , Epitélio Pigmentado Ocular , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Moduladores de Tubulina/farmacologia
8.
Dev Biol ; 425(2): 176-190, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28341548

RESUMO

Zebrafish morphants of osm-3/kif17, a kinesin-2 family member and intraflagellar transport motor, have photoreceptor outer segments that are dramatically reduced in number and size. However, two genetic mutant lines, osm-3/kif17sa0119 and osm-3/kif17sa18340, reportedly lack any observable morphological outer segment defects. In this work, we use TALENs to generate an independent allele, osm-3/kif17mw405, and show that both osm-3/kif17sa0119 and osm-3/kif17mw405 have an outer segment developmental delay in both size and density that is fully recovered by 6 days post-fertilization. Additionally, we use CRISPRs to generate cos2/kif7mw406, a mutation in the kinesin-4 family member cos2/kif7 that has been implicated in controlling ciliary architecture and Hedgehog signaling to test whether it may be functioning redundantly with osm-3/kif17. We show that cos2/kif7mw406 has an outer segment developmental delay similar to the osm-3/kif17 mutants. Using a three-dimensional mathematical model of outer segments, we show that while cos2/kif7mw406 and osm-3/kif17mw405 outer segments are smaller throughout the first 6 days of development, the volumetric rates of outer segment morphogenesis are not different among wild-type, cos2/kif7mw406, and osm-3/kif17mw405 after 60hpf. Instead, our model suggests that cos2/kif7mw406 and osm-3/kif17mw405 impact outer segment morphogenesis through upstream events that that are different for each motor. In the case of cos2/kif7mw406 mutants, we show that early defects in Hedgehog signaling lead to a general, non-photoreceptor-specific delay of retinal neurogenesis, which in turn causes the secondary phenotype of delayed outer segment morphogenesis. In contrast, the osm-3/kif17mw405 outer segment morphogenesis delays are linked specifically to initial disc morphogenesis of photoreceptors rather than an upstream event. Further, we show that osm-3/kif17 mutant mice also exhibit a similarly delayed outer segment development, suggesting a role for osm-3/kif17 in early outer segment development that is conserved across species. In conclusion, we show that both osm-3/kif17 and cos2/kif7 have comparable outer segment developmental delays, although through independent mechanisms.


Assuntos
Cinesinas/metabolismo , Morfogênese , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cílios/efeitos dos fármacos , Cílios/metabolismo , Edição de Genes , Proteínas Hedgehog/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Morfolinos/farmacologia , Mutação/genética , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Temperatura , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
9.
Invest Ophthalmol Vis Sci ; 57(15): 6805-6814, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28002843

RESUMO

Purpose: Mutations in membrane frizzled-related protein (MFRP) are associated with nanophthalmia, hyperopia, foveoschisis, irregular patches of RPE atrophy, and optic disc drusen in humans. Mouse mfrp mutants show retinal degeneration but no change in eye size or refractive state. The goal of this work was to generate zebrafish mutants to investigate the loss of Mfrp on eye size and refractive state, and to characterize other phenotypes observed. Methods: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 methods were used to generate multiple frameshift mutations in zebrafish mfrp causing premature translational stops in Mfrp. Spectral-domain optical coherence tomography (SD-OCT) was used to measure eye metrics and refractive state, and immunohistochemistry was used to study adult eyes. Gene expression levels were measured using quantitative PCR. Results: Zebrafish Mfrp was shown to localize to apical and basal regions of RPE cells, as well as the ciliary marginal zone. Loss of Mfrp in mutant zebrafish was verified histologically. Zebrafish eyes that were mfrp mutant showed reduced axial length causing hyperopia, RPE folding, and macrophages were observed subretinally. Visual acuity was reduced in mfrp mutant animals. Conclusions: Mutation of zebrafish mfrp results in hyperopia with subretinal macrophage infiltration, phenocopying aspects of human and mouse Mfrp deficiency. These mutant zebrafish will be useful in studying the onset and progression of Mfrp-related nanophthalmia, the cues that initiate the recruitment of macrophages, and the mechanisms of Mfrp function.


Assuntos
Glicoproteínas/genética , Hiperopia/genética , Macrófagos/patologia , Microftalmia/genética , Mutação , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/patologia , Animais , DNA/genética , Análise Mutacional de DNA , Glicoproteínas/metabolismo , Humanos , Hiperopia/metabolismo , Hiperopia/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Microftalmia/metabolismo , Microftalmia/patologia , Fenótipo , Reação em Cadeia da Polimerase , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Tomografia de Coerência Óptica , Peixe-Zebra
10.
J Biol Rhythms ; 31(3): 223-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27095816

RESUMO

Ocular clocks, first identified in the retina, are also found in the retinal pigment epithelium (RPE), cornea, and ciliary body. The retina is a complex tissue of many cell types and considerable effort has gone into determining which cell types exhibit clock properties. Current data suggest that photoreceptors as well as inner retinal neurons exhibit clock properties with photoreceptors dominating in nonmammalian vertebrates and inner retinal neurons dominating in mice. However, these differences may in part reflect the choice of circadian output, and it is likely that clock properties are widely dispersed among many retinal cell types. The phase of the retinal clock can be set directly by light. In nonmammalian vertebrates, direct light sensitivity is commonplace among body clocks, but in mice only the retina and cornea retain direct light-dependent phase regulation. This distinguishes the retina and possibly other ocular clocks from peripheral oscillators whose phase depends on the pace-making properties of the hypothalamic central brain clock, the suprachiasmatic nuclei (SCN). However, in mice, retinal circadian oscillations dampen quickly in isolation due to weak coupling of its individual cell-autonomous oscillators, and there is no evidence that retinal clocks are directly controlled through input from other oscillators. Retinal circadian regulation in both mammals and nonmammalian vertebrates uses melatonin and dopamine as dark- and light-adaptive neuromodulators, respectively, and light can regulate circadian phase indirectly through dopamine signaling. The melatonin/dopamine system appears to have evolved among nonmammalian vertebrates and retained with modification in mammals. Circadian clocks in the eye are critical for optimum visual function where they play a role fine tuning visual sensitivity, and their disruption can affect diseases such as glaucoma or retinal degeneration syndromes.


Assuntos
Relógios Circadianos/fisiologia , Luz , Células Fotorreceptoras de Vertebrados/fisiologia , Retina/fisiologia , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Dopamina/metabolismo , Humanos , Melatonina/metabolismo , Camundongos , Núcleo Supraquiasmático/fisiologia , Visão Ocular
11.
Development ; 142(17): 3021-32, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209646

RESUMO

The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Tead-responsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap-dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosage-dependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson's chorioretinal atrophy and congenital retinal coloboma.


Assuntos
Linhagem da Célula , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Epitélio Pigmentado da Retina/citologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Alelos , Animais , Apoptose/genética , Núcleo Celular/metabolismo , Proliferação de Células , Coloboma/patologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células HEK293 , Humanos , Morfogênese/genética , Mutação , Fenótipo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Epitélio Pigmentado da Retina/transplante , Transdução de Sinais/genética , Fatores de Transcrição de Domínio TEA , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Transgenes , Regulação para Cima , Proteínas de Sinalização YAP , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
Adv Exp Med Biol ; 801: 355-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664718

RESUMO

We have characterized a naturally-occurring mutation in mice that causes slow, progressive photoreceptor degeneration, white fundus flecks, and late-onset RPE atrophy. These animals predictably lose visual function as photoreceptors degenerate. Genetic studies identified a deletion in the 5' coding sequence of Mfrp, designated Mfrp (174delG) , which essentially results in a complete knockout at the protein level. We have shown in Mfrp (174delG) mice that these white fundus flecks are due to the presence of F4/80+ inflammatory cells in the subretinal space. Here we expand on our initial description of the cells with additional markers and by determining their origin. We have also begun an analysis of complement factors in the RPE and found decreased levels of C3d, suggesting that the alternative complement pathway may be misregulated. Finally, we compare and contrast the characteristics of fundus images in Mfrp (174delG) mice with those of other mutations that cause similar irregularities, including Crb1 (rd8) and RDH5, and discuss the structural differences that may underlie them.


Assuntos
Proteínas do Sistema Complemento/imunologia , Atrofia Geográfica/patologia , Degeneração Macular/patologia , Monócitos/patologia , Oxirredutases do Álcool/genética , Animais , Transplante de Medula Óssea , Via Alternativa do Complemento/imunologia , Modelos Animais de Doenças , Proteínas do Olho/genética , Atrofia Geográfica/genética , Atrofia Geográfica/imunologia , Degeneração Macular/genética , Degeneração Macular/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Monócitos/imunologia , Proteínas do Tecido Nervoso/genética , Retina/imunologia , Retina/patologia
13.
Vision Res ; 75: 33-6, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23123805

RESUMO

This review focuses on recent advances in the understanding of kinesin-2 family motors in vertebrate photoreceptor development. Zebrafish photoreceptors develop by the 3rd day of embryogenesis, making it possible to study mutant phenotypes without the use of conditional alleles. Recent work using a zebrafish kif3b mutant allele validates the concept that the heterotrimeric kinesin II motor is generally required for ciliogenesis. In zebrafish photoreceptors, however, loss of kif3b function delays but does not block cilium formation. This is thought to occur because both kif3b or kif3c can dimerize with kif3a and function redundantly. The second ciliary kinesin thought to function in photoreceptor cells is kif17. Prior work has shown that either morpholino knockdown of this gene or the overexpression of its dominant negative form can reduce or delay photoreceptor cilium development without any evident impact on ciliogenesis in general. This has led to the idea that kif17 may play an important role only in some specialized cilium types, such the one in photoreceptor cells. In a recently identified kif17 mutant, however, photoreceptor outer segments are formed by 5 dpf and an obvious delay of outer segment formation is seen only at the earliest stage analyzed (3 dpf). This work suggests that kif17 plays a significant role mainly at an early stage of photoreceptor development. Taken together, these studies lead to an intriguing concept that as they differentiate photoreceptors alter their kinesin repertoire.


Assuntos
Cinesinas/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Cílios/metabolismo , Cinesinas/genética , Segmento Externo da Célula Bastonete/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
Vision Res ; 75: 37-43, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23099049

RESUMO

Multiple proteins are targeted to photoreceptor outer segments (OSs) where they function in phototransduction. Intraflagellar transport (IFT), a highly conserved bidirectional transport pathway occurring along the microtubules of the ciliary axoneme has been implicated in OS trafficking. The canonical anterograde motor for IFT is the heterotrimeric kinesin II or KIF3 complex. Previous work from our laboratory has demonstrated a role for an additional kinesin 2 family motor, the homodimeric KIF17. To gain a better understanding of KIF17 function in photoreceptor OS we utilized transgenic zebrafish expressing zfKIF17-GFP to assess the localization and dynamics of zfKIF17. Our data indicate that both endogenous KIF17 and KIF17-GFP are associated with the axoneme of zebrafish cones at both early (5dpf) and late (21 dfp) stages of development. Strikingly, KIF17-GFP accumulates at the OS distal tip in a phenomenon referred to as "tipping". Tipping occurs in the large majority of photoreceptors and also occurs when mammalian KIF17-mCherry is expressed in ciliated epithelial cells in culture. In some cases KIF17-GFP is shed with the OS tip as part of the disc shedding process. We have also found that KIF17-GFP moves within the OS at rates consistent with those observed for IFT and other kinesins.


Assuntos
Cinesinas/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Cílios/metabolismo , Imuno-Histoquímica , Transporte Proteico , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
15.
Biomol Concepts ; 3(3): 267-282, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23762210

RESUMO

Kinesins are ATP-dependent molecular motors that carry cargos along microtubules, generally in an anterograde direction. They are classified into 14 distinct families with varying structural and functional characteristics. KIF17 is a member of the kinesin-2 family that is plus end-directed. It is a homodimer with a pair of head motor domains that bind microtubules, a coiled-coil stalk, and a tail domain that binds cargos. In neurons, KIF17 transports N-methyl-D-aspartate receptor NR2B subunit, kainate receptor GluR5, and potassium Kv4.2 channels from cell bodies exclusively to dendrites. These cargos are necessary for synaptic transmission, learning, memory, and other functions. KIF17's interaction with NXF2 enables the transport of mRNA bidirectionally in dendrites. KIF17 or its homolog OSM-3 also mediates intraflagellar transport of cargos to the distal tips of flagella or cilia, thereby aiding in ciliogenesis. In many invertebrate and vertebrate sensory cells, KIF17 delivers cargos that contribute to chemosensory perception and signal transduction. In vertebrate photoreceptors, KIF17 is necessary for outer segment development and disc morphogenesis. In the testis, KIF17 (KIF17b) mediates microtubule-independent delivery of ACT from the nucleus to the cytoplasm and microtubule-dependent transport of Spatial-ε, both are presumably involved in spermatogenesis. KIF17 is also implicated in epithelial polarity and morphogenesis, placental transport and development, and the development of specific brain regions. The transcriptional regulation of KIF17 has recently been found to be mediated by nuclear respiratory factor 1 (NRF-1), which also regulates NR2B as well as energy metabolism in neurons. Dysfunctions of KIF17 are linked to a number of pathologies.

16.
PLoS One ; 6(9): e25382, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966515

RESUMO

We have identified a novel component of the circadian clock that regulates its sensitivity to light at the evening light to dark transition. USP2 (Ubiquitin Specific Protease 2), which de-ubiquitinylates and stabilizes target proteins, is rhythmically expressed in multiple tissues including the SCN. We have developed a knockout model of USP2 and found that exposure to low irradiance light at ZT12 increases phase delays of USP2(-/-) mice compared to wildtype. We additionally show that USP2b is in a complex with several clock components and regulates the stability and turnover of BMAL1, which in turn alters the expression of several CLOCK/BMAL1 controlled genes. Rhythmic expression of USP2 in the SCN and other tissues offers a new level of control of the clock machinery through de-ubiqutinylation and suggests a role for USP2 during circadian adaptation to environmental day length changes.


Assuntos
Endopeptidases/metabolismo , Luz , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Western Blotting , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Endopeptidases/genética , Feminino , Humanos , Imunoprecipitação , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Reação em Cadeia da Polimerase , Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Ubiquitina Tiolesterase , Proteases Específicas de Ubiquitina
17.
Invest Ophthalmol Vis Sci ; 52(10): 7256-66, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21810984

RESUMO

PURPOSE: The authors have identified a recessive mutation causing progressive retinal degeneration, white fundus flecks, and eventual retinal pigment epithelium (RPE) atrophy. The goal of these studies was to characterize the retinal phenotype, to identify the causative locus, and to examine possible functions of the affected gene. METHODS: SNP mapping, DNA sequencing, and genetic complementation were used to identify the affected locus. Histology, electroretinography, immunohistochemistry, Western blot analysis, fundus photography, electron microscopy, and in vitro phagocytosis assays were used to characterize the phenotype of the mouse. RESULTS: Gene mapping identified a single base pair deletion in membrane-type frizzled related protein (MFRP), designated Mfrp(174delG). MFRP is normally expressed in the RPE and ciliary body but was undetectable by Western blot in mutants. CTRP5, a binding partner of MFRP, was upregulated at the mRNA level and at the protein level in most patients. Assays designed to test the integrity of retinoid cycling and phagocytic pathways showed no deficits in Mfrp(174delG) or rd6 animals. However, the RPE of both Mfrp(174delG) and rd6 mice exhibited a dramatic increase in the number of apical microvilli. Furthermore, evidence of RPE atrophy was evident in Mfrp(174delG) mice by 21 months. CONCLUSIONS: The authors have identified a novel null mutation in mouse Mfrp. This mutation causes photoreceptor degeneration and eventual RPE atrophy, which may be related to alterations in the number of RPE microvilli. These mice will be useful to identify a function of MFRP and to study the pathogenesis of atrophic macular degeneration.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/patologia , Deleção de Sequência , Animais , Atrofia , Sequência de Bases , Western Blotting , Eletrorretinografia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Fenótipo , Polimorfismo de Nucleotídeo Único , Degeneração Retiniana/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
18.
Neural Dev ; 5: 12, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20412557

RESUMO

BACKGROUND: Photoreceptors of the retina are highly compartmentalized cells that function as the primary sensory neurons for receiving and initiating transmission of visual information. Proper morphogenesis of photoreceptor neurons is essential for their normal function and survival. We have characterized a zebrafish mutation, cannonball, that completely disrupts photoreceptor morphogenesis. RESULTS: Analysis revealed a non-sense mutation in cytoplasmic dynein heavy chain 1 (dync1h1), a critical subunit in Dynein1, to underlie the cannonball phenotypes. Dynein1 is a large minus-end directed, microtubule motor protein complex that has been implicated in multiple, essential cellular processes. In photoreceptors, Dynein1 is thought to mediate post-Golgi vesicle trafficking, while Dynein2 is thought to be responsible for outer segment maintenance. Surprisingly, cannonball embryos survive until larval stages, owing to wild-type maternal protein stores. Retinal photoreceptor neurons, however, are significantly affected by loss of Dync1h1, as transmission electron microscopy and marker analyses demonstrated defects in organelle positioning and outer segment morphogenesis and suggested defects in post-Golgi vesicle trafficking. Furthermore, dosage-dependent antisense oligonucleotide knock-down of dync1h1 revealed outer segment abnormalities in the absence of overt inner segment polarity and trafficking defects. Consistent with a specific function of Dync1h1 within the outer segment, immunolocalization showed that this protein and other subunits of Dynein1 and Dynactin localized to the ciliary axoneme of the outer segment, in addition to their predicted inner segment localization. However, knock-down of Dynactin subunits suggested that this protein complex, which is known to augment many Dynein1 activities, is only essential for inner segment processes as outer segment morphogenesis was normal. CONCLUSIONS: Our results indicate that Dynein1 is required for multiple cellular processes in photoreceptor neurons, including organelle positioning, proper outer segment morphogenesis, and potentially post-Golgi vesicle trafficking. Titrated knock-down of dync1h1 indicated that outer segment morphogenesis was affected in photoreceptors that showed normal inner segments. These observations, combined with protein localization studies, suggest that Dynein1 may have direct and essential functions in photoreceptor outer segments, in addition to inner segment functions.


Assuntos
Dineínas do Citoplasma/genética , Dineínas/genética , Mutação/genética , Células Fotorreceptoras/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Axonema/metabolismo , Axonema/ultraestrutura , Diferenciação Celular/genética , Dineínas do Citoplasma/antagonistas & inibidores , Dineínas do Citoplasma/metabolismo , Dineínas/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento/genética , Microscopia Eletrônica de Transmissão , Neurogênese/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Células Fotorreceptoras/ultraestrutura , Retina/ultraestrutura , Vesículas Transportadoras/fisiologia , Vesículas Transportadoras/ultraestrutura
19.
Dev Dyn ; 238(9): 2211-22, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19384852

RESUMO

Kinesin 2 family members are involved in transport along ciliary microtubules. In Caenorhabditis elegans channel cilia, kinesin II and OSM-3 cooperate along microtubule doublets of the axoneme middle segment, whereas OSM-3 alone works on microtubule singlets to elongate the distal segment. Among sensory cilia, vertebrate photoreceptors share a similar axonemal structure with C. elegans channel cilia, and deficiency in either kinesin II or KIF17, the homologue of OSM-3, results in disruption of photoreceptor organization. However, direct comparison of the two effects is confounded by the use of different species and knockdown strategies in prior studies. Here, we directly compare the effects of dominant-negative kinesin II and KIF17 expression in zebrafish cone photoreceptors. Our data indicate that dominant-negative kinesin II disrupts function at the level of the inner segment and synaptic terminal and results in cell death. In contrast, dominant-negative KIF17 has no obvious effect on inner segment or synaptic organization but has an immediate impact on outer segment assembly.


Assuntos
Cinesinas/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/metabolismo , Animais , Western Blotting , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Imuno-Histoquímica , Imunoprecipitação , Cinesinas/genética , Cinesinas/metabolismo , Cinesinas/farmacologia , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/farmacologia
20.
Traffic ; 10(6): 648-63, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19302411

RESUMO

Intraflagellar transport (IFT) provides a mechanism for the transport of cilium-specific proteins, but the mechanisms for linkage of cargo and IFT proteins have not been identified. Using the sensory outer segments (OS) of photoreceptors, which are derived from sensory cilia, we have identified IFT-cargo complexes containing IFT proteins, kinesin 2 family proteins, two photoreceptor-specific membrane proteins, guanylyl cyclase 1 (GC1, Gucy2e) and rhodopsin (RHO), and the chaperones, mammalian relative of DNAJ, DnajB6 (MRJ), and HSC70 (Hspa8). Analysis of these complexes leads to a model in which MRJ through its binding to IFT88 and GC1 plays a critical role in formation or stabilization of the IFT-cargo complexes. Consistent with the function of MRJ in the activation of HSC70 ATPase activity, Mg-ATP enhances the co-IP of GC1, RHO, and MRJ with IFT proteins. Furthermore, RNAi knockdown of MRJ in IMCD3 cells expressing GC1-green fluorescent protein (GFP) reduces cilium membrane targeting of GC1-GFP without apparent effect on cilium elongation.


Assuntos
Guanilato Ciclase/metabolismo , Chaperonas Moleculares/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Rodopsina/metabolismo , Sequência de Aminoácidos , Animais , Imuno-Histoquímica , Camundongos , Dados de Sequência Molecular , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...