Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 120(7): 2569-2584, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34137949

RESUMO

One of the challenges in studies of parasite community ecology is whether the input data for analyses should be parasite abundances/counts, i.e. count data (CD), or parasite incidences (presences/absences), i.e. incidence data (ID). We analysed species responses to environmental factors and species associations in the infracommunities of helminths and ectoparasites in four hosts from Europe (Sorex araneus and Myodes glareolus) and South Africa (Rhabdomys pumilio and Rhabdomys dilectus) and compared the results of four analyses [redundancy analysis (RD), RLQ analysis, joint species distribution modelling (JSDM) and Markov random fields (MRF)] that used either CD or ID as an input. In addition, we compared the differences between the CD and ID results of two analyses (JSDM and MRF) across parasite species between (a) host species within helminths and ectoparasites; (b) helminths and ectoparasites within a host species; and (c) parasite species with contrasting levels of intensity. The results of most analyses for the majority of parasite-host associations were qualitatively similar. However, models based on the ID input performed better than models based on the CD input in three out of four types of analyses (RDA, JSDM and MRF). The differences between the CD and ID models varied between host species (being the lowest in R. pumilio for JSDM and in S. araneus for MRF). However, they were not affected by the level of parasite intensity.


Assuntos
Interações Hospedeiro-Parasita , Parasitos/fisiologia , Doenças Parasitárias/epidemiologia , Animais , Biota , Europa (Continente)/epidemiologia , Feminino , Helmintos/crescimento & desenvolvimento , Helmintos/fisiologia , Especificidade de Hospedeiro , Incidência , Masculino , Cadeias de Markov , Modelos Biológicos , Murinae/parasitologia , Parasitos/crescimento & desenvolvimento , Doenças Parasitárias/parasitologia , África do Sul/epidemiologia
2.
Microorganisms ; 8(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076346

RESUMO

Tick-Borne Encephalitis Virus (TBEV) is a dangerous arbovirus widely distributed in Northern Eurasia. The area of this pathogen changes over time. At the beginning of the 2000s, the Ixodes tick populations in Karelia increased. At the same time, the area of I. persulcatus, the main vector of the Siberian TBEV subtype, also expanded. Herein, we sequenced 10 viruses isolated from ticks collected in three locations from the Karelia region in 2008-2018. PCR positive samples were passaged in suckling mice or pig embryo kidney cells (PEK). After the second passage in suckling, mice viral RNA was isolated and E-gene fragment was sequenced. Viral sequences were expected to be similar or nearly identical. Instead, there was up to a 4.8% difference in nucleotide sequence, comparable with the most diverse viruses belonging to the Baltic subgroup in Siberian TBEV subtype (Baltic TBEV-Sib). To reveal whether this was systemic or incidental, a comprehensive phylogeographical analysis was conducted. Interestingly, viruses within each geographic region demonstrated comparable diversity to the whole Baltic TBEV-Sib. Moreover, Baltic TBEV-Sib has a distribution area limited by three ecological regions. This means that active virus mixing occurs in the vast geographic area forming one common virus pool. The most plausible explanation is the involvement of flying animals in the TBEV spread.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...