Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Clin Med ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36836238

RESUMO

Dental implants are the preferred fixed oral rehabilitation for replacing lost teeth. When peri-implant tissues become inflamed, the removal of plaque accumulating around the implant becomes imperative. Recently, several new strategies have been developed for this purpose, with electrolytic decontamination showing increased potential compared to traditional mechanical strategies. In this in vitro pilot study, we compare the efficacy of an electrolytic decontaminant (Galvosurge®) with an erythritol jet system (PerioFlow®) and two titanium brushes (R-Brush™ and i-Brush™) in removing Pseudomonas aeruginosa PAO1 biofilms from implants. Changes in the implant surface after each approach were also evaluated. Twenty titanium SLA implants were inoculated with P. aeruginosa and then randomly assigned to each treatment group. After treatment, decontamination efficacy was assessed by quantifying colony-forming units (log10 CFU/cm2) from each implant surface. Scanning electron microscopy was used to analyse changes in the implant surface. With the exception of R-Brush, all treatment strategies were similarly effective in removing P. aeruginosa from implants. Major surface changes were observed only in implants treated with titanium brushes. In conclusion, this pilot study suggests that electrolytic decontamination, erythritol-chlorhexidine particle jet system and i-Brush™ brushing have similar performance in removing P. aeruginosa biofilm from dental implants. Further studies are needed to evaluate the removal of more complex biofilms. Titanium brushes caused significant changes to the implant surface, the effects of which need to be evaluated.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36554332

RESUMO

The oral microbiome plays a major role in shaping oral health/disease state; thus, a main challenge for dental practitioners is to preserve or restore a balanced oral microbiome. Nonetheless, when pathogenic microorganisms install in the oral cavity and are incorporated into the oral biofilm, oral infections, such as gingivitis, dental caries, periodontitis, and peri-implantitis, can arise. Several prophylactic and treatment approaches are available nowadays, but most of them have been antibiotic-based. Given the actual context of antimicrobial resistance (AMR), antibiotic stewardship in dentistry would be a beneficial approach to optimize and avoid inappropriate or even unnecessary antibiotic use, representing a step towards precision medicine. Furthermore, the development of new effective treatment options to replace the need for antibiotics is being pursued, including the application of photodynamic therapy and the use of probiotics. In this review, we highlight the advances undergoing towards a better understanding of the oral microbiome and oral resistome. We also provide an updated overview of how dentists are adapting to better manage the treatment of oral infections given the problem of AMR.


Assuntos
Cárie Dentária , Doenças da Boca , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Saúde Bucal , Odontólogos , Cárie Dentária/prevenção & controle , Cárie Dentária/tratamento farmacológico , Farmacorresistência Bacteriana , Papel Profissional , Doenças da Boca/tratamento farmacológico , Doenças da Boca/prevenção & controle
4.
Microbiol Spectr ; 10(4): e0229121, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950860

RESUMO

Following our previous reports on dual-action antibacterial and collagenesis-inducing hybrid peptide constructs based on "pentapeptide-4" (PP4, with amino acid sequence KTTKS), whose N-palmitoyl derivative is the well-known cosmeceutical ingredient Matrixyl, herein we disclose novel ionic liquid/PP4 conjugates (IL-KTTKS). These conjugates present potent activity against either antibiotic-susceptible strains or multidrug resistant clinical isolates of both Gram-positive and Gram-negative bacterial species belonging to the so-called "ESKAPE" group of pathogens. Noteworthy, their antibacterial activity is preserved in simulated wound fluid, which anticipates an effective action in the setting of a real wound bed. Moreover, their collagenesis-inducing effects in vitro are comparable to or stronger than those of Matrixyl. Altogether, IL-KTTKS exert a triple antibacterial, antifungal, and collagenesis-inducing action in vitro. These findings provide solid grounds for us to advance IL-KTTKS conjugates as promising leads for future development of topical treatments for complicated skin and soft tissue infections (cSSTI). Further studies are envisaged to incorporate IL-conjugates into suitable nanoformulations, to reduce toxicity and/or improve resistance to proteolytic degradation. IMPORTANCE As life expectancy increases, diseases causing chronic wound infections become more prevalent. Diabetes, peripheral vascular diseases, and bedridden patients are often associated with non-healing wounds that become infected, resulting in high morbidity and mortality. This is exacerbated by the fact that microbes are becoming increasingly resistant to antibiotics, so efforts must converge toward finding efficient therapeutic alternatives. Recently, our team identified a new type of constructs that combine (i) peptides used in cosmetics to promote collagen formation with (ii) imidazolium-based ionic liquids, which have antimicrobial and skin penetration properties. These constructs have potent wide-spectrum antimicrobial action, including against multidrug-resistant Gram-positive and Gram-negative bacteria, and fungi. Moreover, they can boost collagen formation. Hence, this is an unprecedented class of lead molecules toward development of a new topical medicine for chronically infected wounds.


Assuntos
Anti-Infecciosos , Cosmecêuticos , Líquidos Iônicos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Colágeno/farmacologia , Cosmecêuticos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia
5.
J Cell Mol Med ; 26(10): 2793-2807, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460166

RESUMO

Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Peptídeos/química , Ranidae/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
6.
Pharmaceutics ; 13(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834377

RESUMO

Efficient antibiotics are being exhausted, which compromises the treatment of infections, including complicated skin and skin structure infections (cSSTI) often associated with multidrug resistant (MDR) bacteria, methicillin-resistant S. aureus (MRSA) being the most prevalent. Antimicrobial peptides (AMP) are being increasingly regarded as the new hope for the post-antibiotic era. Thus, future management of cSSTI may include use of peptides that, on the one hand, behave as AMP and, on the other, are able to promote fast and correct skin rebuilding. As such, we combined the well-known cosmeceutical pentapeptide-4 (PP4), devoid of antimicrobial action but possessing collagenesis-boosting properties, with the AMP 3.1, to afford the chimeric peptide PP4-3.1. We further produced its N-methyl imidazole derivative, MeIm-PP4-3.1. Both peptide-based constructs were evaluated in vitro against Gram-negative bacteria, Gram-positive bacteria, and Candida spp. fungi. Additionally, the antibiofilm activity, the toxicity to human keratinocytes, and the activity against S. aureus in simulated wound fluid (SWF) were assessed. The chimeric peptide PP4-3.1 stood out for its potent activity against Gram-positive and Gram-negative bacteria, including against MDR clinical isolates (0.8 ≤ MIC ≤ 5.7 µM), both in planktonic form and in biofilm matrix. The peptide was also active against three clinically relevant species of Candida fungi, with an overall performance superior to that of fluconazole. Altogether, data reveal that PP4-3.1 is as a promising lead for the future development of new topical treatments for severe skin infections.

7.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445281

RESUMO

Bacterial quorum sensing (QS) is a cell-cell communication system that regulates several bacterial mechanisms, including the production of virulence factors and biofilm formation. Thus, targeting microbial QS is seen as a plausible alternative strategy to antibiotics, with potentiality to combat multidrug-resistant pathogens. Many phytochemicals with QS interference activity are currently being explored. Herein, an extract and a compound of bioinspired origin were tested for their ability to inhibit biofilm formation and interfere with the expression of QS-related genes in Pseudomonas aeruginosa and Staphylococcus aureus. The extract, a carboxypyranoanthocyanins red wine extract (carboxypyrano-ant extract), and the pure compound, carboxypyranocyanidin-3-O-glucoside (carboxypyCy-3-glc), did not cause a visible effect on the biofilm formation of the P. aeruginosa biofilms; however, both significantly affected the formation of biofilms by the S. aureus strains, as attested by the crystal violet assay and fluorescence microscopy. Both the extract and the pure compound significantly interfered with the expression of several QS-related genes in the P. aeruginosa and S. aureus biofilms, as per reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results. Indeed, it was possible to conclude that these molecules interfere with QS at distinct stages and in a strain-specific manner. An extract with anti-QS properties could be advantageous because it is easily obtained and could have broad, antimicrobial therapeutic applications if included in topical formulations.


Assuntos
Antocianinas/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Biofilmes/crescimento & desenvolvimento
8.
Antioxidants (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203482

RESUMO

Human skin is commonly described as a particularly dynamic and complex environment, with a physiological balance continuously orchestrated by numerous internal and external factors. Intrinsic aging, exposure to UV radiation and skin pathogens are some of the key players that account for dermatological alterations and ailments. In this regard, this study intended to explore the potential skin-health beneficial properties of a group of molecules belonging to the anthocyanin family: cyanidin- and malvidin-3-O-glucosides and some of their structurally related pigments, resulting in a library of compounds with different structural properties and color hues. The inclusion of both purified compounds and crude extracts provided some insights into their distinctive effects when tested as individual agents or as part of multicomponent mixtures. Overall, most of the compounds were found to reduce biofilm production by S. aureus and P. aeruginosa reference strains, exhibit UV-filter capacity, attenuate the production of reactive oxygen species in human skin keratinocytes and fibroblasts and also showed inhibitory activity of skin-degrading enzymes, in the absence of cytotoxic effects. Carboxypyranocyanidin-3-O-glucoside stood out for its global performance which, combined with its greater structural stability, makes this a particular interesting compound for potential incorporation in topical formulations. Results provide strong evidence of the skin protective effects of these pigments, supporting their further application for cosmeceutical purposes.

9.
J Nat Prod ; 84(6): 1787-1798, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34077221

RESUMO

Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Bothrops , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Antimicrobianos/química , Antiprotozoários/química , Catelicidinas , Células Cultivadas , Leishmania/efeitos dos fármacos , Macrófagos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , América do Sul
10.
Membranes (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445476

RESUMO

In the era of antibiotic resistance, there is an urgent need for efficient antibiotic therapies to fight bacterial infections. Cationic antimicrobial peptides (CAMP) are promising lead compounds given their membrane-targeted mechanism of action, and high affinity towards the anionic composition of bacterial membranes. We present a new CAMP, W-BP100, derived from the highly active BP100, holding an additional tryptophan at the N-terminus. W-BP100 showed a broader antibacterial activity, demonstrating a potent activity against Gram-positive strains. Revealing a high partition constant towards anionic over zwitterionic large unilamellar vesicles and inducing membrane saturation at a high peptide/lipid ratio, W-BP100 has a preferential location for hydrophobic environments. Contrary to BP100, almost no aggregation of anionic vesicles is observed around saturation conditions and at higher concentrations no aggregation is observed. With these results, it is possible to state that with the incorporation of a single tryptophan to the N-terminus, a highly active peptide was obtained due to the π-electron system of tryptophan, resulting in negatively charged clouds, that participate in cation-π interactions with lysine residues. Furthermore, we propose that W-BP100 action can be achieved by electrostatic interactions followed by peptide translocation.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33126532

RESUMO

Bacterial proliferation on certain surfaces is of concern as it tends to lead to infectious health problems. Nanotechnology is offering new options for engineering antimicrobial surfaces. Herein, the antibiofilm and biocidal properties of star-shaped silver nanoparticles (AgNSs) in suspension and as coating surfaces were studied. AgNSs and spherical silver nanoparticles (AgNPs) (used for comparison purposes) were synthesized using reported methods. Glass disks (9 mm diameter) were covered with AgNSs using deposition by centrifugation. Minimum inhibitory concentrations (MICs) of AgNSs and AgNPs were determined against several reference strains and multidrug-resistant isolates and their antibiofilm activity was assessed against preformed biofilms of Pseudomonas aeruginosa and Staphylococcus aureus by both Live/Dead staining and atomic force microscopy (AFM). The antimicrobial properties of AgNSs-coated surfaces were evaluated by the "touch test" method on agar, and also Live/Dead staining and AFM. The MIC values of the AgNSs were 2-4 times lower than those of the AgNPs. Biofilms treated with AgNSs at a concentration equal to the MIC were not significantly affected, although they exhibited more dead cells than the non-treated biofilms. The biocidal activity of AgNSs-coated surfaces was attested, since no growth on agar nor viable cells were observed after contact of the inoculated bacteria with the coated surface for 6 and 24 h. Thus, AgNSs show greater potential as a surface coating with biocidal effects than used as suspension for antimicrobial purposes.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas , Prata , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos
12.
Colloids Surf B Biointerfaces ; 196: 111349, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32992285

RESUMO

The search of new antibiotics, particularly with new mechanisms of action, is nowadays a very important public health issue, due to the worldwide increase of resistant pathogens. Within this effort, much research has been done on antimicrobial peptides, because having the membrane as a target, they represent a new antibiotic paradigm. Among these, cyclic peptides (CPs) made of sequences of D- and L-amino acids have emerged as a new class of potential antimicrobial peptides, due to their expected higher resistance to protease degradation. These CPs are planar structures that can form Self-assembled Cyclic Peptide Nanotubes (SCPNs), in particular in the presence of lipid membranes. Aiming at understanding their mechanism of action, we used biophysical experimental techniques (DSC and ATR-FTIR) together with Coarse-grained molecular dynamics (CG-MD) simulations, to characterize the interaction of these CPs with model membranes of different electrostatic charges' contents. DSC results revealed that the CPs show a strong interaction with negatively charged membranes, with differences in the strength of interactions depending on peptide and on membrane charge content, at odds with no or mild interactions with zwitterionic membranes. ATR-FTIR suggested that the peptides self-assemble at the membrane surface, adopting mainly a ß-structure. The experiments with polarized light showed that in most cases they lie parallel to the membrane surface, but other forms and orientations are also apparent, depending on peptide structure and lipid:peptide ratio. The nanotube formation and orientation, as well as the dependence on membrane charge were also confirmed by the CG-MD simulations. These provide detail on the position and interactions, in agreement with the experimental results. Based on the findings reported here, we could proceed to the design and synthesis of a second-generation CPs, based on CP2 (soluble peptide), with increased activity and reduced toxicity.


Assuntos
Anti-Infecciosos , Nanotubos de Peptídeos , Nanotubos , Antibacterianos , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/farmacologia , Proteínas Citotóxicas Formadoras de Poros
13.
Front Microbiol ; 11: 1852, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903686

RESUMO

Bacteria belonging to Staphylococcus genus, in particular methicillin-resistant Staphylococcus aureus and multidrug-resistant Staphylococcus epidermidis, together with Cutibacterium acnes are the main strains involved in skin disease. The increase in multidrug-resistant bacteria has revived attention on natural compounds as alternative agents for the treatment management. Among these, hop extract, a hydroalcoholic solution obtained from experimental crops of Humulus lupulus L. variety cascade (hop), displays diverse biological properties including an antimicrobial one. The aim of this study was to evaluate the antimicrobial activity and the capacity to inhibit the biofilm formation of a characterized hop extract against S. aureus and S. epidermidis multidrug-resistant strains and against a C. acnes strain. The hop extract was characterized by (i) phytochemical analysis through a reversed-phase high-performance liquid chromatography (HPLC)-fluorimetric method, (ii) biocompatibility test with Artemia salina L., (iii) cytotoxicity against two cell lines, (iv) docking analysis, and (v) antimicrobial and antibiofilm activities by detection of zones inhibition, minimal inhibitory concentrations (MICs), biomass quantification, and cell viability. The hop extract was biocompatible and non-cytotoxic at all tested concentrations. HPLC analysis revealed significant levels of gallic acid, resveratrol, and rutin. This last compound was the most representative displaying a high affinity against PBP2a and KAS III (Ki values in the submicromolar range). The characterized hop extract showed a good antimicrobial action with MICs ranging from 1 to 16 µg/mL and was able to inhibit the biofilm formation of all tested strains, except for two S. aureus strains. The biofilm formed in presence of the hop extract was significantly reduced in most cases, even when present at a concentration of 1/4 MIC. The live/dead images showed a remarkable inhibition in the biofilm formation by hop extract with a weak killing action. Overall, the tested hop extract is a good candidate to further explore for its use in the prevention of infection particularly, by multidrug-resistant Gram-positive pathogens.

14.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859111

RESUMO

A covalent conjugate between an antibacterial ionic liquid and an antimicrobial peptide was produced via "click" chemistry, and found to retain the parent peptide's activity against multidrug-resistant clinical isolates of Gram-negative bacteria, and antibiofilm action on a resistant clinical isolate of Klebsiella pneumoniae, while exhibiting much improved stability towards tyrosinase-mediated modifications. This unprecedented communication is a prelude for the promise held by ionic liquids -based approaches as tools to improve the action of bioactive peptides.


Assuntos
Reação de Cicloadição/métodos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Líquidos Iônicos/química , Proteínas Citotóxicas Formadoras de Poros/química , Alcinos/química , Azidas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Líquidos Iônicos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Citotóxicas Formadoras de Poros/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-32365881

RESUMO

Fluoroquinolones (FQs) are antibiotics commonly used in clinical practice, although nowadays they are becoming ineffective due to the emergence of several mechanisms of resistance in most bacteria. The complexation of FQs with divalent metal ions and phenanthroline (phen) is a possible approach to circumvent antimicrobial resistance, since it forms very stable complexes known as metalloantibiotics. This work is aimed at determining the antimicrobial activity of metalloantibiotics of Cu(II)FQphen against a panel of multidrug­resistant (MDR) clinical isolates and to clarify their mechanism of action. Minimum inhibitory concentrations (MICs) were determined against MDR isolates of Escherichiacoli,Pseudomonasaeruginosa and methicillin-resistant Staphylococcus aureus (MRSA). Metalloantibiotics showed improved antimicrobial activity against several clinical isolates, especially MRSA. Synergistic activity was evaluated in combination with ciprofloxacin and ampicillin by the disk diffusion and checkerboard methods. Synergistic and additive effects were shown against MRSA isolates. The mechanism of action was studied though enzymatic assays and atomic force microscopy (AFM) experiments. The results indicate a similar mechanism of action for FQs and metalloantibiotics. In summary, metalloantibiotics seem to be an effective alternative to pure FQs against MRSA. The results obtained in this work open the way to the screening of metalloantibiotics against other Gram­positive bacteria.


Assuntos
Fluoroquinolonas , Metais , Staphylococcus aureus Resistente à Meticilina , Antibacterianos , Fluoroquinolonas/farmacologia , Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico
16.
Biomolecules ; 10(4)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230960

RESUMO

Amphibian skin is a multifunctional organ that plays key roles in defense, breathing, and water balance. In this study, skin secretion samples of the fire salamander (Salamandra salamandra) were separated using RP-HPLC and de novo sequenced using MALDI-TOF MS/MS. Next, we used an in silico platform to screen antioxidant molecules in the framework of density functional theory. One of the identified peptides, salamandrin-I, [M + H]+ = 1406.6 Da, was selected for solid-phase synthesis; it showed free radical scavenging activity against DPPH and ABTS radicals. Salamandrin-I did not show antimicrobial activity against Gram-positive and -negative bacteria. In vitro assays using human microglia and red blood cells showed that salamandrin-I has no cytotoxicity up to the concentration of 100 µM. In addition, in vivo toxicity tests on Galleria mellonella larvae resulted in no mortality at 20 and 40 mg/kg. Antioxidant peptides derived from natural sources are increasingly attracting interest. Among several applications, these peptides, such as salamandrin-I, can be used as templates in the design of novel antioxidant molecules that may contribute to devising strategies for more effective control of neurological disease.


Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Antioxidantes/farmacologia , Salamandra , Pele/química , Proteínas de Anfíbios/isolamento & purificação , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Dicroísmo Circular , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Testes de Toxicidade
18.
Beilstein J Org Chem ; 15: 2544-2551, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728168

RESUMO

Eight new sulfide-based cyclic peptidomimetic analogues of solonamides A and B have been synthesized via solid-phase peptide synthesis and SN2' reaction on a Morita-Baylis-Hillman (MBH) residue introduced at the N-terminal of a tetrapeptide. This last step takes advantage of the electrophilic feature of the MBH residue and represents a new cyclization strategy occurring. The analogues were prepared in moderate overall yields and did not show toxic effects on Staphylococcus aureus growth and were not toxic to human fibroblasts. Two of them inhibited the hemolytic activity of S. aureus, suggesting an interfering action in the bacterial quorum sensing similar to the one already reported for solonamides.

19.
Front Microbiol ; 10: 1915, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481944

RESUMO

Antimicrobial resistance is becoming one the most serious health threats worldwide, as it not only hampers effective treatment of infectious diseases using current antibiotics, but also increases the risks of medical procedures like surgery, transplantation, bone and dental implantation, chemotherapy, or chronic wound management. To date, there are no effective measures to tackle life-threatening nosocomial infections caused by multidrug resistant bacterial species, of which Gram-negative species within the so-called "ESKAPE" pathogens are the most worrisome. Many such bacteria are frequently isolated from severely infected skin lesions such as diabetic foot ulcers (DFU). In this connection, we are pursuing new peptide constructs encompassing antimicrobial and collagenesis-inducing motifs, to tackle skin and soft tissue infections by exerting a dual effect: antimicrobial protection and faster healing of the wound. This produced peptide 3.1-PP4 showed MIC values as low as 1.0 and 2.1 µM against Escherichia coli and Pseudomonas aeruginosa, respectively, and low toxicity to HFF-1 human fibroblasts. Remarkably, the peptide was also potent against multidrug-resistant isolates of Klebsiella pneumoniae, E. coli, and P. aeruginosa (MIC values between 0.5 and 4.1 µM), and hampered the formation of/disaggregated K. pneumoniae biofilms of resistant clinical isolates. Moreover, this notable hybrid peptide retained the collagenesis-inducing behavior of the reference cosmeceutical peptide C16-PP4 ("Matrixyl"). In conclusion, 3.1-PP4 is a highly promising lead toward development of a topical treatment for severely infected skin injuries.

20.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340580

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in a large variety of infections. Their co-occurrence in the same site of infection has been frequently reported and is linked to enhanced virulence and difficulty of treatment. Herein, the antimicrobial and antibiofilm activities of an intragenic antimicrobial peptide (IAP), named Hs02, which was uncovered from the human unconventional myosin 1H protein, were investigated against several P. aeruginosa and S. aureus strains, including multidrug-resistant (MDR) isolates. The antibiofilm activity was evaluated on single- and dual-species biofilms of P. aeruginosa and S. aureus. Moreover, the effect of peptide Hs02 on the membrane fluidity of the strains was assessed through Laurdan generalized polarization (GP). Minimum inhibitory concentration (MIC) values of peptide Hs02 ranged from 2 to 16 µg/mL against all strains and MDR isolates. Though Hs02 was not able to hamper biofilm formation by some strains at sub-MIC values, it clearly affected 24 h preformed biofilms, especially by reducing the viability of the bacterial cells within the single- and dual-species biofilms, as shown by confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) images. Laurdan GP values showed that Hs02 induces membrane rigidification in both P. aeruginosa and S. aureus. Peptide Hs02 can potentially be a lead for further improvement as an antibiofilm agent.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Meios de Cultura/química , Humanos , Lauratos/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...