Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2649: 235-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258866

RESUMO

The development of long-read nucleic acid sequencing is beginning to make very substantive impact on the conduct of metagenome analysis, particularly in relation to the problem of recovering the genomes of member species of complex microbial communities. Here we outline bioinformatics workflows for the recovery and characterization of complete genomes from long-read metagenome data and some complementary procedures for comparison of cognate draft genomes and gene quality obtained from short-read sequencing and long-read sequencing.


Assuntos
Metagenoma , Microbiota , Metagenômica/métodos , Microbiota/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Water Res ; 221: 118729, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714465

RESUMO

This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.


Assuntos
Glicogênio , Purificação da Água , Reatores Biológicos/microbiologia , Fósforo , Filogenia , Esgotos/microbiologia
3.
Front Microbiol ; 13: 834906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495637

RESUMO

Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT , the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.

4.
Sci Rep ; 11(1): 18091, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508122

RESUMO

This study aimed to characterize the alteration of the fecal microbiome and antimicrobial resistance (AMR) determinants in 24 piglets at day 3 pre-weaning (D. - 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8), using whole-genome shotgun sequencing. Distinct clusters of microbiomes and AMR determinants were observed at D.8 when Prevotella (20.9%) was the major genus, whereas at D. - 3-D.3, Alistipes (6.9-12.7%) and Bacteroides (5.2-8.5%) were the major genera. Lactobacillus and Escherichia were notably observed at D. - 3 (1.2%) and D. - 3-D.3 (0.2-0.4%), respectively. For AMR, a distinct cluster of AMR determinants was observed at D.8, mainly conferring resistance to macrolide-lincosamide-streptogramin (mefA), ß-lactam (cfxA6 and aci1) and phenicol (rlmN). In contrast, at D. - 3-D.3, a high abundance of determinants with aminoglycoside (AMG) (sat, aac(6')-aph(2''), aadA and acrF), ß-lactam (fus-1, cepA and mrdA), multidrug resistance (MDR) (gadW, mdtE, emrA, evgS, tolC and mdtB), phenicol (catB4 and cmlA4), and sulfonamide patterns (sul3) was observed. Canonical correlation analysis (CCA) plot associated Escherichia coli with aac(6')-aph(2''), emrA, mdtB, catB4 and cmlA4 at D. - 3, D.0 and/or D.3 whereas at D.8 associations between Prevotella and mefA, cfxA6 and aci1 were identified. The weaning age and diet factor played an important role in the microbial community composition.


Assuntos
Antibacterianos/farmacologia , Fezes/microbiologia , Microbiota/efeitos dos fármacos , Desmame , Fatores Etários , Animais , Biodiversidade , Metagenoma , Metagenômica/métodos , Suínos
5.
Water Environ Res ; 93(11): 2598-2608, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34260796

RESUMO

Temperature is known to influence the operational efficiency of enhanced biological phosphorus removal (EBPR) systems. This study investigated the impact of thermal stress above 30°C on the properties of an EBPR community established with tropical inoculum. The results confirmed the stability of the 30°C EBPR system with high P-removal efficiency over 210 days. Accumulibacter was abundant in the community. When the EBPR sludge was subjected to a sudden temperature increase to 35°C under multiple cycles of anaerobic-aerobic phases, each lasting 4 h, high P-removal was maintained over 2 days, before gradually failing when the Competibacter appeared to outcompete Accumulibacter. These data suggested that the EBPR capacity is robust when subjected to occasional thermal stress. However, it could not be maintained even for a short time under temperature stress at 40°C. Thus, the threshold temperature for tropical EBPR failure is between 35°C and 40°C. PRACTITIONER POINTS: EBPR was stably maintained at 30°C with Accumulibacter being dominant. Good EBPR activities persisted for a short period at 35°C. EBPR was deteriorated at 40°C. The threshold temperature for tropical EBPR failure is between 35°C and 40°C.


Assuntos
Microbiota , Fósforo , Reatores Biológicos , Polifosfatos , Esgotos , Temperatura
6.
BMC Genomics ; 22(1): 464, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157973

RESUMO

BACKGROUND: Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS: Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS: The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.


Assuntos
Alcaloides , Burkholderiales/enzimologia , Manganês , Oxirredutases , Pseudomonas/enzimologia , Burkholderiales/genética , Toxinas de Cianobactérias , Genoma Bacteriano , Leptothrix , Oxirredução , Oxirredutases/metabolismo , Pseudomonas/genética
7.
NPJ Biofilms Microbiomes ; 7(1): 23, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727564

RESUMO

New long read sequencing technologies offer huge potential for effective recovery of complete, closed genomes from complex microbial communities. Using long read data (ONT MinION) obtained from an ensemble of activated sludge enrichment bioreactors we recover 22 closed or complete genomes of community members, including several species known to play key functional roles in wastewater bioprocesses, specifically microbes known to exhibit the polyphosphate- and glycogen-accumulating organism phenotypes (namely Candidatus Accumulibacter and Dechloromonas, and Micropruina, Defluviicoccus and Candidatus Contendobacter, respectively), and filamentous bacteria (Thiothrix) associated with the formation and stability of activated sludge flocs. Additionally we demonstrate the recovery of close to 100 circularised plasmids, phages and small microbial genomes from these microbial communities using long read assembled sequence. We describe methods for validating long read assembled genomes using their counterpart short read metagenome-assembled genomes, and assess the influence of different correction procedures on genome quality and predicted gene quality. Our findings establish the feasibility of performing long read metagenome-assembled genome recovery for both chromosomal and non-chromosomal replicons, and demonstrate the value of parallel sampling of moderately complex enrichment communities to obtaining high quality reference genomes of key functional species relevant for wastewater bioprocesses.


Assuntos
Bactérias/classificação , Reatores Biológicos/microbiologia , Biologia Computacional/métodos , Esgotos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Genoma Bacteriano , Glicogênio/metabolismo , Metagenoma , Plasmídeos/genética , Polifosfatos/metabolismo
8.
Nat Commun ; 11(1): 5281, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077707

RESUMO

The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Microbiota , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Ecossistema , Metabolômica , Metagenoma , Metagenômica , Proteômica , Fatores de Tempo
9.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900808

RESUMO

This study describes the first direct functional assignment of a highly abundant extracellular protein from a key environmental and biotechnological biofilm performing an anaerobic ammonium oxidation (anammox) process. Expression levels of Brosi_A1236, belonging to a class of proteins previously suggested to be cell surface associated, were in the top one percentile of all genes in the "Candidatus Brocadia sinica"-enriched biofilm. The Brosi_A1236 structure was computationally predicted to consist of immunoglobulin-like anti-parallel ß-strands, and circular dichroism conducted on the isolated surface protein indicated that ß-strands are the dominant higher-order structure. The isolated protein was stained positively by the ß-sheet-specific stain thioflavin T, along with cell surface- and matrix-associated regions of the biofilm. The surface protein has a large unstructured content, including two highly disordered domains at its C terminus. The disordered domains bound to the substratum and thereby facilitated the adhesion of negatively charged latex microspheres, which were used as a proxy for cells. The disordered domains and isolated whole surface protein also underwent liquid-liquid phase separation to form liquid droplets in suspension. Liquid droplets of disordered protein wet the surfaces of microspheres and bacterial cells and facilitated their coalescence. Furthermore, the surface layer protein formed gels as well as ordered crystalline structures. These observations suggest that biophysical remodeling through phase transitions promotes aggregation and biofilm formation.IMPORTANCE By employing biophysical and liquid-liquid phase separation concepts, this study revealed how a highly abundant extracellular protein enhances the key environmental and industrial bioprocess of anaerobic ammonium oxidation (anammox). Extracellular proteins of environmental biofilms are understudied and poorly annotated in public databases. Understanding the function of extracellular proteins is also increasingly important for improving bioprocesses and resource recovery. Here, protein functions were assessed based on theoretical predictions of intrinsically disordered domains, known to promote adhesion and liquid-liquid phase separation, and available surface layer protein properties. A model is thus proposed to explain how the protein promotes aggregation and biofilm formation by extracellular matrix remodeling and phase transitions. This work provides a strong foundation for functional investigations of extracellular proteins involved in biofilm development.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Oxirredução , Anaerobiose , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos/genética , Proteínas de Bactérias/isolamento & purificação , Fenômenos Biofísicos
10.
Front Microbiol ; 11: 594524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584563

RESUMO

Bulk production of medium-chain carboxylates (MCCs) with 6-12 carbon atoms is of great interest to biotechnology. Open cultures (e.g., reactor microbiomes) have been utilized to generate MCCs in bioreactors. When in-line MCC extraction and prevention of product inhibition is required, the bioreactors have been operated at mildly acidic pH (5.0-5.5). However, model chain-elongating bacteria grow optimally at neutral pH values. Here, we isolated a chain-elongating bacterium (strain 7D4C2) that grows at mildly acidic pH. We studied its metabolism and compared its whole genome and the reverse ß-oxidation (rBOX) genes to other bacteria. Strain 7D4C2 produces lactate, acetate, n-butyrate, n-caproate, biomass, and H2/CO2 from hexoses. With only fructose as substrate (pH 5.5), the maximum n-caproate specificity (i.e., products per other carboxylates produced) was 60.9 ± 1.5%. However, this was considerably higher at 83.1 ± 0.44% when both fructose and n-butyrate (electron acceptor) were combined as a substrate. A comparison of 7D4C2 cultures with fructose and n-butyrate with an increasing pH value from 4.5 to 9.0 showed a decreasing n-caproate specificity from ∼92% at mildly acidic pH (pH 4.5-5.0) to ∼24% at alkaline pH (pH 9.0). Moreover, when carboxylates were extracted from the broth (undissociated n-caproic acid was ∼0.3 mM), the n-caproate selectivity (i.e., product per substrate fed) was 42.6 ± 19.0% higher compared to 7D4C2 cultures without extraction. Based on the 16S rRNA gene sequence, strain 7D4C2 is most closely related to the isolates Caproicibacter fermentans (99.5%) and Caproiciproducens galactitolivorans (94.7%), which are chain-elongating bacteria that are also capable of lactate production. Whole-genome analyses indicate that strain 7D4C2, C. fermentans, and C. galactitolivorans belong to the same genus of Caproiciproducens. Their rBOX genes are conserved and located next to each other, forming a gene cluster, which is different than for other chain-elongating bacteria such as Megasphaera spp. In conclusion, Caproiciproducens spp., comprising strain 7D4C2, C. fermentans, C. galactitolivorans, and several unclassified strains, are chain-elongating bacteria that encode a highly conserved rBOX gene cluster. Caproiciproducens sp. 7D4C2 (DSM 110548) was studied here to understand n-caproate production better at mildly acidic pH within microbiomes and has the additional potential as a pure-culture production strain to convert sugars into n-caproate.

11.
Microbiome ; 7(1): 61, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992083

RESUMO

BACKGROUND: Short-read sequencing technologies have long been the work-horse of microbiome analysis. Continuing technological advances are making the application of long-read sequencing to metagenomic samples increasingly feasible. RESULTS: We demonstrate that whole bacterial chromosomes can be obtained from an enriched community, by application of MinION sequencing to a sample from an EBPR bioreactor, producing 6 Gb of sequence that assembles into multiple closed bacterial chromosomes. We provide a simple pipeline for processing such data, which includes a new approach to correcting erroneous frame-shifts. CONCLUSIONS: Advances in long-read sequencing technology and corresponding algorithms will allow the routine extraction of whole chromosomes from environmental samples, providing a more detailed picture of individual members of a microbiome.


Assuntos
Cromossomos Bacterianos , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Reatores Biológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular
12.
Biol Direct ; 13(1): 6, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29678199

RESUMO

BACKGROUND: There are numerous computational tools for taxonomic or functional analysis of microbiome samples, optimized to run on hundreds of millions of short, high quality sequencing reads. Programs such as MEGAN allow the user to interactively navigate these large datasets. Long read sequencing technologies continue to improve and produce increasing numbers of longer reads (of varying lengths in the range of 10k-1M bps, say), but of low quality. There is an increasing interest in using long reads in microbiome sequencing, and there is a need to adapt short read tools to long read datasets. METHODS: We describe a new LCA-based algorithm for taxonomic binning, and an interval-tree based algorithm for functional binning, that are explicitly designed for long reads and assembled contigs. We provide a new interactive tool for investigating the alignment of long reads against reference sequences. For taxonomic and functional binning, we propose to use LAST to compare long reads against the NCBI-nr protein reference database so as to obtain frame-shift aware alignments, and then to process the results using our new methods. RESULTS: All presented methods are implemented in the open source edition of MEGAN, and we refer to this new extension as MEGAN-LR (MEGAN long read). We evaluate the LAST+MEGAN-LR approach in a simulation study, and on a number of mock community datasets consisting of Nanopore reads, PacBio reads and assembled PacBio reads. We also illustrate the practical application on a Nanopore dataset that we sequenced from an anammox bio-rector community. REVIEWERS: This article was reviewed by Nicola Segata together with Moreno Zolfo, Pete James Lockhart and Serghei Mangul. CONCLUSION: This work extends the applicability of the widely-used metagenomic analysis software MEGAN to long reads. Our study suggests that the presented LAST+MEGAN-LR pipeline is sufficiently fast and accurate.


Assuntos
Algoritmos , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , Análise de Sequência de DNA , Software
13.
Arch Virol ; 156(2): 285-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21110050

RESUMO

A type III Trichomonas vaginalis virus, which may be involved in transcriptional regulation of the major surface protein gene P270 of the protozoan pathogen Trichomonas vaginalis, was purified and characterized in the present study. The complete 4844-base-pair complementary DNA sequence of the viral genome reveals overlapping cap and pol genes with a putative ribosomal frame-shifting signal within the overlap region. The type III virus is related more closely to the type II virus than to the type I virus in the sequence of its ribosomal frameshift signal and in its capsid protein. Phylogenetic analysis revealed that these viruses could be grouped in the same clade as a genus distantly related to other genera in the family Totiviridae. Virus-induced P270 gene expression was only evident in Trichomonas vaginalis cells infected with either a type II or type III virus, but not with a type I virus. These findings suggest that transcription of the P270 gene is likely regulated by viral factors common to type II and type III viruses and thus provides important information for future investigation of virus-host interactions.


Assuntos
Totiviridae/classificação , Totiviridae/genética , Trichomonas vaginalis/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Clonagem Molecular , Feminino , Genes de Protozoários , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Proteínas de Protozoários/genética , RNA Viral/química , RNA Viral/genética , Homologia de Sequência de Aminoácidos , Totiviridae/isolamento & purificação , Transcrição Gênica , Trichomonas vaginalis/patogenicidade
14.
Mol Microbiol ; 43(3): 665-76, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11929523

RESUMO

We showed previously that transcription of the ran gene in Giardia lamblia is regulated by an AT-rich initiator. In the present study, the ran initiator was found to regulate transcription of a neighbouring PHD zinc-finger protein gene. Deletion and scanning mutagenesis of the phd promoter in a firefly luciferase reporter system showed that the promoter activity is determined by multiple single-stranded T-tract DNA elements distributed into a distal domain spanning the ran initiator (-134/-103) and a proximal domain (-88/-48) spanning phd messenger RNA (mRNA) start sites (-74, -55 and -53 relative to the first ATG). The promoter activity is repressed by the single T-tract element on a non-template strand of the ran initiator, and is activated by closely spaced T-tract elements on the opposite strand. The T-tract elements in the phd and ran initiators compete for similar ssDNA binding proteins. Mutation of -47/-42 resulted in dramatic reduction of luciferase activity without changing luciferase mRNA levels, indicating the potential involvement of a regulatory mechanism in PHD protein translation. These findings suggest that G. lamblia uses multiple copies of a T-tract element as both core and distal elements in regulating transcription initiation, and that expression of the phd gene is regulated at multiple levels.


Assuntos
Giardia lamblia/genética , Proteínas de Protozoários/genética , Dedos de Zinco/genética , Proteína ran de Ligação ao GTP/genética , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Intergênico , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteínas de Protozoários/metabolismo , Transcrição Gênica , Proteína ran de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...