Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19963-19983, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859117

RESUMO

We demonstrate wavenumber-dependent DLS-OCT measurements of collective and self-diffusion coefficients in concentrated silica suspensions across a broad q-range, utilizing a custom home-built OCT system. Depending on the sample polydispersity, either the collective or self-diffusion is measured. The measured collective-diffusion coefficient shows excellent agreement with hard-sphere theory and serves as an effective tool for accurately determining particle sizes. We employ the decoupling approximation for simultaneously measuring collective and self-diffusion coefficients, even in sufficiently monodisperse suspensions, using a high-speed Thorlabs OCT system. This enables particle size and volume fraction determination without the necessity of wavenumber-dependent measurements. We derive a relationship between the particle number-based polydispersity index and the ratio of self and collective mode amplitudes in the autocorrelation function and utilize it to measure the particle number-based polydispersity index. Notably, the polydispersity determined in this manner demonstrates improved sensitivity to smaller particle sizes compared to the standard intensity-based DLS cumulant analysis performed on dilute samples.

2.
Lab Chip ; 23(1): 182-194, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448477

RESUMO

Continuous flow manufacturing (CFM) has shown remarkable advantages in the industrial-scale production of drug-loaded nanomedicines, including mRNA-based COVID-19 vaccines. Thus far, CFM research in nanomedicine has mainly focused on the initial particle formation step, while post-formation production steps are hardly ever integrated. The opportunity to implement in-line quality control of critical quality attributes merits closer investigation. Here, we designed and tested a CFM setup for the manufacturing of liposomal nanomedicines that can potentially encompass all manufacturing steps in an end-to-end system. Our main aim was to elucidate the key composition and process parameters that affect the physicochemical characteristics of the liposomes. Total flow rate, lipid concentration and residence time of the liposomes in a high ethanol environment (i.e., above 20% v/v) emerged as critical parameters to tailor liposome size between 80 and 150 nm. After liposome formation, the pressure and the surface area of the filter in the ultrafiltration unit were critical parameters in the process of clearing the dispersion from residual ethanol. As a final step, we integrated in-line measurement of liposome size and residual ethanol content. Such in-line measurements allow for real-time monitoring and in-process adjustment of key composition and process parameters.


Assuntos
COVID-19 , Lipossomos , Humanos , Lipossomos/química , Vacinas contra COVID-19 , Etanol , Tamanho da Partícula
3.
Proc Natl Acad Sci U S A ; 116(21): 10303-10308, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31064872

RESUMO

The mixing of a powder of 10- to 50-µm primary particles into a liquid to form a dispersion with the highest possible solid content is a common industrial operation. Building on recent advances in the rheology of such "granular dispersions," we study a paradigmatic example of such powder incorporation: the conching of chocolate, in which a homogeneous, flowing suspension is prepared from an inhomogeneous mixture of particulates, triglyceride oil, and dispersants. Studying the rheology of a simplified formulation, we find that the input of mechanical energy and staged addition of surfactants combine to effect a considerable shift in the jamming volume fraction of the system, thus increasing the maximum flowable solid content. We discuss the possible microscopic origins of this shift, and suggest that chocolate conching exemplifies a ubiquitous class of powder-liquid mixing.

4.
Anal Chim Acta ; 935: 213-23, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27543030

RESUMO

This study focuses on the twin screw granulator of a continuous from-powder-to-tablet production line. Whereas powder dosing into the granulation unit is possible from a container of preblended material, a truly continuous process uses several feeders (each one dosing an individual ingredient) and relies on a continuous blending step prior to granulation. The aim of the current study was to investigate the in-line blending capacity of this twin screw granulator, equipped with conveying elements only. The feasibility of in-line NIR (SentroPAT, Sentronic GmbH, Dresden, Germany) spectroscopy for evaluating the blend uniformity of powders after the granulator was tested. Anhydrous theophylline was used as a tracer molecule and was blended with lactose monohydrate. Theophylline and lactose were both fed from a different feeder into the twin screw granulator barrel. Both homogeneous mixtures and mixing experiments with induced errors were investigated. The in-line spectroscopic analyses showed that the twin screw granulator is a useful tool for in-line blending in different conditions. The blend homogeneity was evaluated by means of a novel statistical method being the moving F-test method in which the variance between two blocks of collected NIR spectra is evaluated. The α- and ß-error of the moving F-test are controlled by using the appropriate block size of spectra. The moving F-test method showed to be an appropriate calibration and maintenance free method for blend homogeneity evaluation during continuous mixing.


Assuntos
Tecnologia Farmacêutica , Calibragem , Pós/química , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Comprimidos/síntese química , Comprimidos/química , Tecnologia Farmacêutica/instrumentação
5.
J Pharm Biomed Anal ; 114: 471-81, 2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26257268

RESUMO

Dry powder mixing is a wide spread Unit Operation in the Pharmaceutical industry. With the advent of in-line Near Infrared (NIR) Spectroscopy and Quality by Design principles, application of Process Analytical Technology to monitor Blend Uniformity (BU) is taking a more prominent role. Yet routine use of NIR for monitoring, let alone control of blending processes is not common in the industry, despite the improved process understanding and (cost) efficiency that it may offer. Method maintenance, robustness and translation to regulatory requirements have been important barriers to implement the method. This paper presents a qualitative NIR-BU method offering a convenient and compliant approach to apply BU control for routine operation and process understanding, without extensive calibration and method maintenance requirements. The method employs a moving F-test to detect the steady state of measured spectral variances and the endpoint of mixing. The fundamentals and performance characteristics of the method are first presented, followed by a description of the link to regulatory BU criteria, the method sensitivity and practical considerations. Applications in upscaling, tech transfer and commercial production are described, along with evaluation of the method performance by comparison with results from quantitative calibration models. A full application, in which end-point detection via the F-test controls the blending process of a low dose product, was successfully filed in Europe and Australia, implemented in commercial production and routinely used for about five years and more than 100 batches.


Assuntos
Composição de Medicamentos/métodos , Espectrofotometria/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Desenho de Fármacos , Excipientes , Preparações Farmacêuticas/química , Pós , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Soft Matter ; 11(23): 4640-8, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25962849

RESUMO

Using a powerful combination of experiments and simulations we demonstrate how the microstructure and its time evolution are linked with mechanical properties in a frustrated, out-of-equilibrium, particle gel under shear. An intermediate volume fraction colloid-polymer gel is used as a model system, allowing quantification of the interplay between interparticle attractions and shear forces. Rheometry, confocal microscopy and Brownian dynamics reveal that high shear rates, fully breaking the structure, lead after shear cessation to more homogeneous and stronger gels, whereas preshear at low rates creates largely heterogeneous weaker gels with reduced elasticity. We find that in comparison, thermal quenching cannot produce structural inhomogeneities under shear. We argue that external shear has strong implications on routes towards metastable equilibrium, and therefore gelation scenarios. Moreover, these results have strong implications for material design and industrial applications, such as mixing, processing and transport protocols coupled to the properties of the final material.

7.
Nat Commun ; 6: 7187, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25994921

RESUMO

Synchronization of coupled oscillators has been scrutinized for over three centuries, from Huygens' pendulum clocks to physiological rhythms. One such synchronization phenomenon, dynamic mode locking, occurs when naturally oscillating processes are driven by an externally imposed modulation. Typically only averaged or integrated properties are accessible, leaving underlying mechanisms unseen. Here, we visualize the microscopic dynamics underlying mode locking in a colloidal model system, by using particle trajectories to produce phase portraits. Furthermore, we use this approach to examine the enhancement of mode locking in a flexible chain of magnetically coupled particles, which we ascribe to breathing modes caused by mode-locked density waves. Finally, we demonstrate that an emergent density wave in a static colloidal chain mode locks as a quasi-particle, with microscopic dynamics analogous to those seen for a single particle. Our results indicate that understanding the intricate link between emergent behaviour and microscopic dynamics is key to controlling synchronization.

8.
Nat Commun ; 4: 1335, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299885

RESUMO

Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth, while mechanical, enzymatic or chemical cell dissociation methods are used for cellular passaging. However, these methods are ill defined, thus introducing variability into the system, and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate, which support long-term human embryonic stem cell growth and pluripotency over a period of 2-6 months. The hydrogels permitted gentle, reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used, undefined biological substrates represent a flexible and scalable approach for improving the definition, efficacy and safety of human embryonic stem cell culture systems for research, industrial and clinical applications.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Temperatura , Fenômenos Biofísicos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/farmacologia , Ensaio de Unidades Formadoras de Colônias , Meios de Cultura/farmacologia , Combinação de Medicamentos , Eletroforese em Gel de Poliacrilamida , Humanos , Laminina/farmacologia , Proteoglicanas/farmacologia , Estresse Mecânico , Fatores de Tempo
9.
Opt Express ; 20(27): 28707-16, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263108

RESUMO

Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.


Assuntos
Algoritmos , Coloides/química , Técnicas Fotoacústicas/métodos , Reologia/métodos , Transferência de Energia
10.
Biophys J ; 103(8): 1637-47, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23083706

RESUMO

We present a fast, high-throughput method for characterizing the motility of microorganisms in three dimensions based on standard imaging microscopy. Instead of tracking individual cells, we analyze the spatiotemporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function of the system. We demonstrate our method on two different types of microorganisms: the bacterium Escherichia coli (both smooth swimming and wild type) and the biflagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the intermediate scattering function, we are able to extract the swimming speed distribution, fraction of motile cells, and diffusivity for E. coli, and the swimming speed distribution, and amplitude and frequency of the oscillatory dynamics for C. reinhardtii. In both cases, the motility parameters were averaged over ∼10(4) cells and obtained in a few minutes.


Assuntos
Rastreamento de Células/métodos , Chlamydomonas reinhardtii/fisiologia , Escherichia coli/fisiologia , Locomoção , Luz , Microscopia/métodos , Espalhamento de Radiação
11.
Phys Rev Lett ; 102(5): 058302, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19257565

RESUMO

We study the pressure-driven flow of concentrated colloids confined in glass microchannels at the single-particle level using fast confocal microscopy. For channel to particle size ratios 2a/D[over ] less, similar30, the flow rate of the suspended particles shows fluctuations. These turn into regular oscillations for higher confinements (2a/D[over ] approximately 20). We present evidence to link these oscillations with the relative flow of solvent and particles (permeation) and the effect of confinement on shear thickening.

12.
Adv Colloid Interface Sci ; 146(1-2): 1-17, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19012873

RESUMO

We present recent advances in the instrumentation and analysis methods for quantitative imaging of concentrated colloidal suspensions under flow. After a brief review of colloidal imaging, we describe various flow geometries for two and three-dimensional (3D) imaging, including a 'confocal rheoscope'. This latter combination of a confocal microscope and a rheometer permits simultaneous characterization of rheological response and 3D microstructural imaging. The main part of the paper discusses in detail how to identify and track particles from confocal images taken during flow. After analyzing the performance of the most commonly used colloid tracking algorithm by Crocker and Grier extended to flowing systems, we propose two new algorithms for reliable particle tracking in non-uniform flows to the level of accuracy already available for quiescent systems. We illustrate the methods by applying it to data collected from colloidal flows in three different geometries (channel flow, parallel plate shear and cone plate rheometry).

13.
Phys Rev Lett ; 98(19): 198305, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17677670

RESUMO

We image the flow of a nearly random close packed, hard-sphere colloidal suspension (a "paste") in a square capillary using confocal microscopy. The flow consists of a "plug" in the center while shear occurs localized adjacent to the channel walls, reminiscent of yield-stress fluid behavior. However, the observed scaling of the velocity profiles with the flow rate strongly contrasts yield-stress fluid predictions. Instead, the velocity profiles can be captured by a theory of stress fluctuations originally developed for chute flow of dry granular media. We verified this both for smooth and rough walls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...