Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 233, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724941

RESUMO

BACKGROUND: Shipworms are marine xylophagus bivalve molluscs, which can live on a diet solely of wood due to their ability to produce plant cell wall-degrading enzymes. Bacterial carbohydrate-active enzymes (CAZymes), synthesised by endosymbionts living in specialised shipworm cells called bacteriocytes and located in the animal's gills, play an important role in wood digestion in shipworms. However, the main site of lignocellulose digestion within these wood-boring molluscs, which contains both endogenous lignocellulolytic enzymes and prokaryotic enzymes, is the caecum, and the mechanism by which bacterial enzymes reach the distant caecum lumen has remained so far mysterious. Here, we provide a characterisation of the path through which bacterial CAZymes produced in the gills of the shipworm Lyrodus pedicellatus reach the distant caecum to contribute to the digestion of wood. RESULTS: Through a combination of transcriptomics, proteomics, X-ray microtomography, electron microscopy studies and in vitro biochemical characterisation, we show that wood-digesting enzymes produced by symbiotic bacteria are localised not only in the gills, but also in the lumen of the food groove, a stream of mucus secreted by gill cells that carries food particles trapped by filter feeding to the mouth. Bacterial CAZymes are also present in the crystalline style and in the caecum of their shipworm host, suggesting a unique pathway by which enzymes involved in a symbiotic interaction are transported to their site of action. Finally, we characterise in vitro four new bacterial glycosyl hydrolases and a lytic polysaccharide monooxygenase identified in our transcriptomic and proteomic analyses as some of the major bacterial enzymes involved in this unusual biological system. CONCLUSION: Based on our data, we propose that bacteria and their enzymes are transported from the gills along the food groove to the shipworm's mouth and digestive tract, where they aid in wood digestion.


Assuntos
Bivalves , Proteômica , Animais , Bactérias , Filogenia , Simbiose
2.
Nat Commun ; 9(1): 5125, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510200

RESUMO

Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in polysaccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean woodborers of the genus Limnoria are among the few animals that can survive on a diet of this recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also glucomannans), corresponding with the abundance of cellulases in their digestive system, but xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein, hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on wood in the absence of gut symbionts. These findings may hold potential for innovations in lignocellulose biorefining.


Assuntos
Trato Gastrointestinal/fisiologia , Hemocianinas/metabolismo , Isópodes/fisiologia , Lignina/metabolismo , Madeira/parasitologia , Animais , Celulose/metabolismo , Dieta , Digestão/fisiologia , Fezes/química , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/ultraestrutura , Isópodes/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Xilanos/metabolismo
3.
Biotechnol Biofuels ; 11: 59, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527236

RESUMO

Lignocellulose forms the structural framework of woody plant biomass and represents the most abundant carbon source in the biosphere. Turnover of woody biomass is a critical component of the global carbon cycle, and the enzymes involved are of increasing industrial importance as industry moves away from fossil fuels to renewable carbon resources. Shipworms are marine bivalve molluscs that digest wood and play a key role in global carbon cycling by processing plant biomass in the oceans. Previous studies suggest that wood digestion in shipworms is dominated by enzymes produced by endosymbiotic bacteria found in the animal's gills, while little is known about the identity and function of endogenous enzymes produced by shipworms. Using a combination of meta-transcriptomic, proteomic, imaging and biochemical analyses, we reveal a complex digestive system dominated by uncharacterized enzymes that are secreted by a specialized digestive gland and that accumulate in the cecum, where wood digestion occurs. Using a combination of transcriptomics, proteomics, and microscopy, we show that the digestive proteome of the shipworm Lyrodus pedicellatus is mostly composed of enzymes produced by the animal itself, with a small but significant contribution from symbiotic bacteria. The digestive proteome is dominated by a novel 300 kDa multi-domain glycoside hydrolase that functions in the hydrolysis of ß-1,4-glucans, the most abundant polymers in wood. These studies allow an unprecedented level of insight into an unusual and ecologically important process for wood recycling in the marine environment, and open up new biotechnological opportunities in the mobilization of sugars from lignocellulosic biomass.

4.
Nat Commun ; 9(1): 756, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472725

RESUMO

Thermobia domestica belongs to an ancient group of insects and has a remarkable ability to digest crystalline cellulose without microbial assistance. By investigating the digestive proteome of Thermobia, we have identified over 20 members of an uncharacterized family of lytic polysaccharide monooxygenases (LPMOs). We show that this LPMO family spans across several clades of the Tree of Life, is of ancient origin, and was recruited by early arthropods with possible roles in remodeling endogenous chitin scaffolds during development and metamorphosis. Based on our in-depth characterization of Thermobia's LPMOs, we propose that diversification of these enzymes toward cellulose digestion might have endowed ancestral insects with an effective biochemical apparatus for biomass degradation, allowing the early colonization of land during the Paleozoic Era. The vital role of LPMOs in modern agricultural pests and disease vectors offers new opportunities to help tackle global challenges in food security and the control of infectious diseases.


Assuntos
Artrópodes/enzimologia , Proteínas de Insetos/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Animais , Artrópodes/genética , Artrópodes/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Celulose/metabolismo , Quitina/metabolismo , Evolução Molecular , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Insetos/enzimologia , Insetos/genética , Insetos/crescimento & desenvolvimento , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Filogenia , Proteômica
5.
Proc Natl Acad Sci U S A ; 110(25): 10189-94, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733951

RESUMO

Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.


Assuntos
Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Crustáceos/enzimologia , Tolerância ao Sal/fisiologia , Animais , Biocombustíveis , Biomassa , Celulose 1,4-beta-Celobiosidase/genética , Crustáceos/genética , Cristalografia por Raios X , Sistema Digestório/enzimologia , Ativação Enzimática/fisiologia , Hypocrea/enzimologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Água do Mar , Relação Estrutura-Atividade , Especificidade por Substrato
6.
Science ; 327(5963): 328-31, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20075252

RESUMO

Artemisinin is a plant natural product produced by Artemisia annua and the active ingredient in the most effective treatment for malaria. Efforts to eradicate malaria are increasing demand for an affordable, high-quality, robust supply of artemisinin. We performed deep sequencing on the transcriptome of A. annua to identify genes and markers for fast-track breeding. Extensive genetic variation enabled us to build a detailed genetic map with nine linkage groups. Replicated field trials resulted in a quantitative trait loci (QTL) map that accounts for a significant amount of the variation in key traits controlling artemisinin yield. Enrichment for positive QTLs in parents of new high-yielding hybrids confirms that the knowledge and tools to convert A. annua into a robust crop are now available.


Assuntos
Antimaláricos/metabolismo , Artemisia/genética , Artemisia/metabolismo , Artemisininas/metabolismo , Mapeamento Cromossômico , Genes de Plantas , Locos de Características Quantitativas , Cruzamentos Genéticos , DNA Complementar , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Malária/tratamento farmacológico , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
Plant Physiol ; 149(1): 499-514, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18997116

RESUMO

The diversification of chemical production in glandular trichomes is important in the development of resistance against pathogens and pests in two species of tomato. We have used genetic and genomic approaches to uncover some of the biochemical and molecular mechanisms that underlie the divergence in trichome metabolism between the wild species Solanum habrochaites LA1777 and its cultivated relative, Solanum lycopersicum. LA1777 produces high amounts of insecticidal sesquiterpene carboxylic acids (SCAs), whereas cultivated tomatoes lack SCAs and are more susceptible to pests. We show that trichomes of the two species have nearly opposite terpenoid profiles, consisting mainly of monoterpenes and low levels of sesquiterpenes in S. lycopersicum and mainly of SCAs and very low monoterpene levels in LA1777. The accumulation patterns of these terpenoids are different during development, in contrast to the developmental expression profiles of terpenoid pathway genes, which are similar in the two species, but they do not correlate in either case with terpenoid accumulation. However, our data suggest that the accumulation of monoterpenes in S. lycopersicum and major sesquiterpenes in LA1777 are linked both genetically and biochemically. Metabolite analyses after targeted gene silencing, inhibitor treatments, and precursor feeding all show that sesquiterpene biosynthesis relies mainly on products from the plastidic 2-C-methyl-d-erythritol-4-phosphate pathway in LA1777 but less so in the cultivated species. Furthermore, two classes of sesquiterpenes produced by the wild species may be synthesized from distinct pools of precursors via cytosolic and plastidial cyclases. However, highly trichome-expressed sesquiterpene cyclase-like enzymes were ruled out as being involved in the production of major LA1777 sesquiterpenes.


Assuntos
Monoterpenos/metabolismo , Sesquiterpenos/metabolismo , Solanum lycopersicum/metabolismo , Solanum/metabolismo , Ácidos Carboxílicos/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genoma de Planta , Solanum lycopersicum/genética , Óleos Voláteis/análise , RNA de Plantas/metabolismo , Solanum/genética , Fosfatos Açúcares/metabolismo
8.
Plant Physiol ; 148(4): 1830-46, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931142

RESUMO

Acyl sugars containing branched-chain fatty acids (BCFAs) are exuded by glandular trichomes of many species in Solanaceae, having an important defensive role against insects. From isotope-feeding studies, two modes of BCFA elongation have been proposed: (1) fatty acid synthase-mediated two-carbon elongation in the high acyl sugar-producing tomato species Solanum pennellii and Datura metel; and (2) alpha-keto acid elongation-mediated one-carbon increments in several tobacco (Nicotiana) species and a Petunia species. To investigate the molecular mechanisms underlying BCFAs and acyl sugar production in trichomes, we have taken a comparative genomic approach to identify critical enzymatic steps followed by gene silencing and metabolite analysis in S. pennellii and Nicotiana benthamiana. Our study verified the existence of distinct mechanisms of acyl sugar synthesis in Solanaceae. From microarray analyses, genes associated with alpha-keto acid elongation were found to be among the most strongly expressed in N. benthamiana trichomes only, supporting this model in tobacco species. Genes encoding components of the branched-chain keto-acid dehydrogenase complex were expressed at particularly high levels in trichomes of both species, and we show using virus-induced gene silencing that they are required for BCFA production in both cases and for acyl sugar synthesis in N. benthamiana. Functional analysis by down-regulation of specific KAS I genes and cerulenin inhibition indicated the involvement of the fatty acid synthase complex in BCFA production in S. pennellii. In summary, our study highlights both conserved and divergent mechanisms in the production of important defense compounds in Solanaceae and defines potential targets for engineering acyl sugar production in plants for improved pest tolerance.


Assuntos
Carboidratos/biossíntese , Ácidos Graxos/biossíntese , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Solanum/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/fisiologia , Acil Coenzima A/metabolismo , Acil Coenzima A/fisiologia , Carboidratos/genética , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/fisiologia , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Cetoácidos/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solanum/genética , Solanum/ultraestrutura , Nicotiana/genética , Nicotiana/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...