Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 6(1)2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25604789

RESUMO

UNLABELLED: Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae's ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. IMPORTANCE: Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we identified the different players involved in the SHP/Rgg system in S. agalactiae, which is the leading agent of severe infections in human newborns. We have identified a direct target of the Rgg regulator in S. agalactiae (called RovS) and examined a previously proposed target, all in the context of associated SHP. For the first time, we have also demonstrated the implication of the SHP/RovS mechanism in virulence, as well as its host organ specificity. Thus, this cell-to-cell communication system may represent a future target for S. agalactiae disease treatment.


Assuntos
Peptídeos/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade , Animais , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Peptídeos/genética , Sinais Direcionadores de Proteínas , Infecções Estreptocócicas/genética , Streptococcus agalactiae/citologia , Streptococcus agalactiae/genética , Virulência
2.
PLoS One ; 8(6): e66042, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776602

RESUMO

We described a quorum-sensing mechanism in the streptococci genus involving a short hydrophobic peptide (SHP), which acts as a pheromone, and a transcriptional regulator belonging to the Rgg family. The shp/rgg genes, found in nearly all streptococcal genomes and in several copies in some, have been classified into three groups. We used a genetic approach to evaluate the functionality of the SHP/Rgg quorum-sensing mechanism, encoded by three selected shp/rgg loci, in pathogenic and non-pathogenic streptococci. We characterized the mature form of each SHP pheromone by mass-spectrometry. We produced synthetic peptides corresponding to these mature forms, and used them to study functional complementation and cross-talk between these different SHP/Rgg systems. We demonstrate that a SHP pheromone of one system can influence the activity of a different system. Interestingly, this does not seem to be dependent on the SHP/Rgg group and cross-talk between pathogenic and non-pathogenic streptococci is observed.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , Streptococcus/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Peptídeos/genética , Feromônios/genética , Feromônios/metabolismo , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , Streptococcus/genética
3.
J Bacteriol ; 195(8): 1845-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396911

RESUMO

In streptococci, ComX is the alternative sigma factor controlling the transcription of the genes encoding the genetic transformation machinery. In Streptococcus thermophilus, comX transcription is controlled by a complex consisting of a transcriptional regulator of the Rgg family, ComR, and a signaling peptide, ComS, which controls ComR activity. Following its initial production, ComS is processed, secreted, and imported back into the cell by the Ami oligopeptide transporter. We characterized these steps and the partners interacting with ComS during its extracellular circuit in more detail. We identified the mature form of ComS and demonstrated the involvement of the membrane protease Eep in ComS processing. We found that ComS was secreted but probably not released into the extracellular medium. Natural competence was first discovered in a chemically defined medium without peptides. We show here that the presence of a high concentration of nutritional peptides in the medium prevents the triggering of competence. In milk, the ecological niche of S. thermophilus, competence was found to be functional, suggesting that the concentration of nutritional peptides was too low to interfere with ComR activation. The kinetics of expression of the comS, comR, and comX genes and of a late competence gene, dprA, in cultures inoculated at different initial densities revealed that the activation mechanism of ComR by ComS is more a timing device than a quorum-sensing mechanism sensu stricto. We concluded that the ComS extracellular circuit facilitates tight control over the triggering of competence in S. thermophilus.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus thermophilus/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico Ativo , Membrana Celular/fisiologia , Cromatografia Líquida , Competência de Transformação por DNA/fisiologia , Luciferases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Percepção de Quorum , Fator sigma/genética , Fator sigma/metabolismo , Streptococcus thermophilus/genética , Espectrometria de Massas em Tandem , Fatores de Tempo , Transcrição Gênica/fisiologia
4.
J Bacteriol ; 191(14): 4647-55, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19447907

RESUMO

In gram-positive bacteria, oligopeptide transport systems, called Opp or Ami, play a role in nutrition but are also involved in the internalization of signaling peptides that take part in the functioning of quorum-sensing pathways. Our objective was to reveal functions that are controlled by Ami via quorum-sensing mechanisms in Streptococcus thermophilus, a nonpathogenic bacterium widely used in dairy technology in association with other bacteria. Using a label-free proteomic approach combining one-dimensional electrophoresis with liquid chromatography-tandem mass spectrometry analysis, we compared the proteome of the S. thermophilus LMD-9 to that of a mutant deleted for the subunits C, D, and E of the ami operon. Both strains were grown in a chemically defined medium (CDM) without peptides. We focused our attention on proteins that were no more detected in the ami deletion mutant. In addition to the three subunits of the Ami transporter, 17 proteins fulfilled this criterion and, among them, 7 were similar to proteins that have been identified as essential for transformation in S. pneumoniae. These results led us to find a condition of growth, the early exponential state in CDM, that allows natural transformation in S. thermophilus LMD-9 to turn on spontaneously. Cells were not competent in M17 rich medium. Furthermore, we demonstrated that the Ami transporter controls the triggering of the competence state through the control of the transcription of comX, itself controlling the transcription of late competence genes. We also showed that one of the two oligopeptide-binding proteins of strain LMD-9 plays the predominant role in the control of competence.


Assuntos
Proteínas de Membrana Transportadoras/fisiologia , Oligopeptídeos/metabolismo , Streptococcus thermophilus/fisiologia , Transformação Bacteriana , Proteínas de Bactérias/análise , Proteínas de Bactérias/biossíntese , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Proteoma/análise , Streptococcus thermophilus/química , Fatores de Transcrição/biossíntese
5.
J Bacteriol ; 189(24): 8844-54, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921293

RESUMO

Gram-positive bacteria secrete a variety of peptides that are often subjected to posttranslational modifications and that are either antimicrobials or pheromones involved in bacterial communication. Our objective was to identify peptides secreted by Streptococcus thermophilus, a nonpathogenic bacterium widely used in dairy technology in association with other bacteria, and to understand their potential roles in cell-cell communication. Using reverse-phase liquid chromatography, mass spectrometry, and Edman sequencing, we analyzed the culture supernatants of three S. thermophilus strains (CNRZ1066, LMG18311, and LMD-9) grown in a medium containing no peptides. We identified several peptides in the culture supernatants, some of them found with the three strains while others were specific to the LMD-9 strain. We focused our study on a new modified peptide secreted by S. thermophilus LMD-9 and designated Pep1357C. This peptide contains 9 amino acids and lost 2 Da in a posttranslational modification, most probably a dehydrogenation, leading to a linkage between the Lys2 and Trp6 residues. Production of Pep1357C and transcription of its encoding gene depend on both the medium composition and the growth phase. Furthermore, we demonstrated that transcription of the gene coding for Pep1357C is drastically decreased in mutants inactivated for the synthesis of a short hydrophobic peptide, a transcriptional regulator, or the oligopeptide transport system. Taken together, our results led us to deduce that the transcription of the Pep1357C-encoding gene is controlled by a new quorum-sensing system.


Assuntos
Regulação Bacteriana da Expressão Gênica , Peptídeos Cíclicos/biossíntese , Percepção de Quorum , Streptococcus thermophilus/genética , Streptococcus thermophilus/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cromatografia Líquida , Genes Bacterianos , Espectrometria de Massas , Mutação , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/isolamento & purificação , Processamento de Proteína Pós-Traducional , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , Análise de Sequência de Proteína , Transcrição Gênica
6.
J Biol Chem ; 277(1): 32-9, 2002 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-11602593

RESUMO

The functions necessary for bacterial growth strongly depend on the features of the bacteria and the components of the growth media. Our objective was to identify the functions essential to the optimum growth of Streptococcus thermophilus in milk. Using random insertional mutagenesis on a S. thermophilus strain chosen for its ability to grow rapidly in milk, we obtained several mutants incapable of rapid growth in milk. We isolated and characterized one of these mutants in which an amiA1 gene encoding an oligopeptide-binding protein (OBP) was interrupted. This gene was a part of an operon containing all the components of an ATP binding cassette transporter. Three highly homologous amiA genes encoding OBPs work with the same components of the ATP transport system. Their simultaneous inactivation led to a drastic diminution in the growth rate in milk and the absence of growth in chemically defined medium containing peptides as the nitrogen source. We constructed single and multiple negative mutants for AmiAs and cell wall proteinase (PrtS), the only proteinase capable of hydrolyzing casein oligopeptides outside the cell. Growth experiments in chemically defined medium containing peptides indicated that AmiA1, AmiA2, and AmiA3 exhibited overlapping substrate specificities, and that the whole system allows the transport of peptides containing from 3 to 23 residues.


Assuntos
Proteínas de Transporte/fisiologia , Lipoproteínas/fisiologia , Polissacarídeos Bacterianos/metabolismo , Streptococcus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias , Sequência de Bases , Transporte Biológico , Meios de Cultura , Dados de Sequência Molecular , Streptococcus/crescimento & desenvolvimento , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...