Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(23): 3819-3836.e8, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37788670

RESUMO

Investigations of memory mechanisms have been, thus far, neuron centric, despite the brain comprising diverse cell types. Using rats and mice, we assessed the cell-type-specific contribution of hippocampal insulin-like growth factor 2 (IGF2), a polypeptide regulated by learning and required for long-term memory formation. The highest level of hippocampal IGF2 was detected in pericytes, the multi-functional mural cells of the microvessels that regulate blood flow, vessel formation, the blood-brain barrier, and immune cell entry into the central nervous system. Learning significantly increased pericytic Igf2 expression in the hippocampus, particularly in the highly vascularized stratum lacunosum moleculare and stratum moleculare layers of the dentate gyrus. Igf2 increases required neuronal activity. Regulated hippocampal Igf2 knockout in pericytes, but not in fibroblasts or neurons, impaired long-term memories and blunted the learning-dependent increase of neuronal immediate early genes (IEGs). Thus, neuronal activity-driven signaling from pericytes to neurons via IGF2 is essential for long-term memory.


Assuntos
Neurônios , Pericitos , Animais , Camundongos , Ratos , Hipocampo/metabolismo , Memória de Longo Prazo , Neurônios/metabolismo , Transdução de Sinais
2.
Cell Rep ; 41(7): 111643, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384113

RESUMO

Episodic memories formed in early childhood rapidly decay, but their latent traces remain stored long term. These memories require the dorsal hippocampus (dHPC) and seem to undergo a developmental critical period. It remains to be determined whether the maturation of parvalbumin interneurons (PVIs), a major mechanism of critical periods, contributes to memory development. Here, we show that episodic infantile learning significantly increases the levels of parvalbumin in the dHPC 48 h after training. Chemogenetic inhibition of PVIs before learning indicated that these neurons are required for infantile memory formation. A bilateral dHPC injection of the γ-aminobutyric acid type A receptor agonist diazepam after training elicited long-term memory expression in infant rats, although direct PVI chemogenetic activation had no effect. Finally, PVI activity was required for brain-derived neurotrophic factor (BDNF)-dependent maturation of memory competence, i.e., adult-like long-term memory expression. Thus, dHPC PVIs are critical for the formation of infantile memories and for memory development.


Assuntos
Memória Episódica , Parvalbuminas , Pré-Escolar , Ratos , Humanos , Animais , Interneurônios/fisiologia , Hipocampo/fisiologia
3.
Glia ; 70(11): 2207-2231, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35916383

RESUMO

The consumption of glucose in the brain peaks during late childhood; yet, whether and how glucose metabolism is differentially regulated in the brain during childhood compared to adulthood remains to be understood. In particular, it remains to be determined how glucose metabolism is involved in behavioral activations such as learning. Here we show that, compared to adult, the juvenile rat hippocampus has significantly higher mRNA levels of several glucose metabolism enzymes belonging to all glucose metabolism pathways, as well as higher levels of the monocarboxylate transporters MCT1 and MCT4 and the glucose transporters endothelial-GLUT1 and GLUT3 proteins. Furthermore, relative to adults, long-term episodic memory formation in juvenile animals requires significantly higher rates of aerobic glycolysis and astrocytic-neuronal lactate coupling in the hippocampus. Only juvenile but not adult long-term memory formation recruits GLUT3, neuronal 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and more efficiently engages glucose in the hippocampus. Hence, compared to adult, the juvenile hippocampus distinctively regulates glucose metabolism pathways, and formation of long-term memory in juveniles involves differential neuronal glucose metabolism mechanisms.


Assuntos
Glucose , Glicólise , Fosfofrutoquinase-2/metabolismo , Animais , Astrócitos/metabolismo , Criança , Glucose/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Humanos , Neurônios/metabolismo , Fosfofrutoquinase-2/genética , Ratos
4.
Elife ; 102021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825649

RESUMO

The metabolic mechanisms underlying the formation of early-life episodic memories remain poorly characterized. Here, we assessed the metabolomic profile of the rat hippocampus at different developmental ages both at baseline and following episodic learning. We report that the hippocampal metabolome significantly changes over developmental ages and that learning regulates differential arrays of metabolites according to age. The infant hippocampus had the largest number of significant changes following learning, with downregulation of 54 metabolites. Of those, a large proportion was associated with the glutathione-mediated cellular defenses against oxidative stress. Further biochemical, molecular, and behavioral assessments revealed that infantile learning evokes a rapid and persistent increase in the activity of neuronal glutathione reductase, the enzyme that regenerates reduced glutathione from its oxidized form. Inhibition of glutathione reductase selectively impaired long-term memory formation in infant but not in juvenile and adult rats, confirming its age-specific role. Thus, metabolomic profiling revealed that the hippocampal glutathione-mediated antioxidant pathway is differentially required for the formation of infantile memory.


Assuntos
Glutationa Redutase/metabolismo , Hipocampo/metabolismo , Memória Episódica , Memória de Longo Prazo/fisiologia , Animais , Feminino , Masculino , Metaboloma , Ratos , Ratos Long-Evans
5.
Learn Mem ; 28(9): 300-306, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400531

RESUMO

Episodic memories formed during infancy are rapidly forgotten, a phenomenon associated with infantile amnesia, the inability of adults to recall early-life memories. In both rats and mice, infantile memories, although not expressed, are actually stored long term in a latent form. These latent memories can be reinstated later in life by certain behavioral reminders or by artificial reactivations of neuronal ensembles activated at training. Whether the recovery of infantile memories is limited by developmental age, maternal presence, or contingency of stimuli presentation remains to be determined. Here, we show that the return of inhibitory avoidance memory in rats following a behavioral reactivation consisting of an exposure to the context (conditioned stimuli [CS]) and footshock (unconditioned stimuli [US]) given in a temporally unpaired fashion, is evident immediately after US and is limited by the developmental age at which the reactivations are presented; however, it is not influenced by maternal presence or the time interval between training and reactivation. We conclude that one limiting factor for infantile memory reinstatement is developmental age, suggesting that a brain maturation process is necessary to allow the recovery of a "lost" infantile memory.


Assuntos
Amnésia , Memória Episódica , Animais , Encéfalo , Condicionamento Operante , Rememoração Mental , Camundongos , Ratos
6.
Nat Commun ; 11(1): 628, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005863

RESUMO

The mechanisms underlying the maturation of learning and memory abilities are poorly understood. Here we show that episodic learning produces unique biological changes in the hippocampus of infant rats and mice compared to juveniles and adults. These changes include persistent neuronal activation, BDNF-dependent increase in the excitatory synapse markers synaptophysin and PSD-95, and significant maturation of AMPA receptor synaptic responses. Inhibition of PSD-95 induction following learning impairs both AMPA receptor response maturation and infantile memory, indicating that the synapse formation/maturation is necessary for creating infantile memories. Conversely, capturing the learning-induced changes by presenting a subsequent learning experience or by chemogenetic activation of the neural ensembles tagged by learning matures memory functional competence. This memory competence is selective for the type of experience encountered, as it transfers within similar hippocampus-dependent learning domains but not to other hippocampus-dependent types of learning. Thus, experiences in early life produce selective maturation of memory abilities.


Assuntos
Aprendizagem , Memória , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Ratos , Ratos Long-Evans , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinaptofisina/metabolismo
7.
Learn Mem ; 26(11): 436-448, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31615855

RESUMO

The basolateral complex of amygdala (BLA) processes emotionally arousing aversive and rewarding experiences. The BLA is critical for acquisition and storage of threat-based memories and the modulation of the consolidation of arousing explicit memories, that is, the memories that are encoded and stored by the medial temporal lobe. In addition, in conjunction with the medial prefrontal cortex (mPFC), the BLA plays an important role in fear memory extinction. The BLA develops relatively early in life, but little is known about the molecular changes that accompany its development. Here, we quantified relative basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins in the rat BLA at various developmental ages: postnatal day 17 (PN17, infants), PN24 (juveniles), and PN80 (young adults). We found that the levels of activation markers of brain plasticity, including phosphorylation of CREB at Ser133, CamKIIα at Thr286, pERK1/pERK2 at Thr202/Tyr204, and GluA1 at Ser831 and Ser845, were significantly higher in infant and juvenile compared with adult brain. In contrast, age increase was accompanied by a significant augmentation in the levels of proteins that mark synaptogenesis and synapse maturation, such as synaptophysin, PSD95, SynCAM, GAD65, GAD67, and GluN2A/GluN2B ratio. Finally, we observed significant age-associated changes in structural markers, including MAP2, MBP, and MAG, suggesting that the structural connectivity of the BLA increases over time. The biological differences in the BLA between developmental ages compared with adulthood suggest the need for caution in extrapolating conclusions based on BLA-related brain plasticity and behavioral studies conducted at different developmental stages.


Assuntos
Complexo Nuclear Basolateral da Amígdala/crescimento & desenvolvimento , Complexo Nuclear Basolateral da Amígdala/metabolismo , Bainha de Mielina/metabolismo , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Fatores Etários , Animais , Feminino , Masculino , Ratos , Ratos Long-Evans
8.
Glia ; 66(6): 1244-1262, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29076603

RESUMO

Memory, the ability to retain learned information, is necessary for survival. Thus far, molecular and cellular investigations of memory formation and storage have mainly focused on neuronal mechanisms. In addition to neurons, however, the brain comprises other types of cells and systems, including glia and vasculature. Accordingly, recent experimental work has begun to ask questions about the roles of non-neuronal cells in memory formation. These studies provide evidence that all types of glial cells (astrocytes, oligodendrocytes, and microglia) make important contributions to the processing of encoded information and storing memories. In this review, we summarize and discuss recent findings on the critical role of astrocytes as providers of energy for the long-lasting neuronal changes that are necessary for long-term memory formation. We focus on three main findings: first, the role of glucose metabolism and the learning- and activity-dependent metabolic coupling between astrocytes and neurons in the service of long-term memory formation; second, the role of astrocytic glucose metabolism in arousal, a state that contributes to the formation of very long-lasting and detailed memories; and finally, in light of the high energy demands of the brain during early development, we will discuss the possible role of astrocytic and neuronal glucose metabolisms in the formation of early-life memories. We conclude by proposing future directions and discussing the implications of these findings for brain health and disease. Astrocyte glycogenolysis and lactate play a critical role in memory formation. Emotionally salient experiences form strong memories by recruiting astrocytic ß2 adrenergic receptors and astrocyte-generated lactate. Glycogenolysis and astrocyte-neuron metabolic coupling may also play critical roles in memory formation during development, when the energy requirements of brain metabolism are at their peak.


Assuntos
Astrócitos/metabolismo , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo
9.
Nat Protoc ; 12(7): 1415-1436, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28686584

RESUMO

Rats have the ability to learn about potential food sources by sampling their odors on the breath of conspecifics. Although this ethologically based social behavior has been transposed to the laboratory to probe nonspatial associative olfactory memory, only a few studies have taken full advantage of its unique features to examine the organization of recently and remotely acquired information. We provide a set of standardized procedures and technical refinements that are particularly useful in achieving this goal while minimizing confounding factors. These procedures, built upon a three-stage protocol (odor exposure, social interaction and preference test), are designed to optimize performance across variable retention delays, thus enabling the reliable assessment of recent and remote memory, and underlying processes, including encoding, consolidation, retrieval and forgetting. The different variants of the social transmission of food preference paradigm, which take a few days to several weeks to perform, make it an attractive and versatile tool that can be coupled to many applications in CNS research. The paradigm can be easily implemented in a typical rodent facility by personnel with standard animal behavioral expertise.


Assuntos
Técnicas de Observação do Comportamento/métodos , Comportamento Alimentar , Preferências Alimentares , Memória , Olfato , Comportamento Social , Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...