Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(14): 6785-6792, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946549

RESUMO

Nonreciprocity, i.e. inequivalence in amplitudes and frequencies of spin waves propagating in opposite directions, is a key property underlying functionality in prospective magnonic devices. Here we demonstrate experimentally and theoretically a simple approach to induce frequency nonreciprocity in a magnetostatically coupled ferromagnetic bilayer structure with a nonmagnetic spacer by its geometrical asymmetry. Using Brillouin light scattering, we show the formation of two collective spin wave modes in Fe81Ga19/Cu/Fe81Ga19 structure with different thicknesses of ferromagnetic layers. Experimental reconstruction and theoretical modeling of the dispersions of acoustic and optical collective spin wave modes reveal that both possess nonreciprocity reaching several percent at the wavenumber of 22 × 104 rad cm-1. The analysis demonstrates that the shift of the amplitudes of counter-propagating coupled modes towards either of the layers is responsible for the nonreciprocity because of the pronounced dependence of spin wave frequency on the layers' thickness. The proposed approach enables the design of multilayered ferromagnetic structures with a given spin wave dispersion for magnonic logic gates.

2.
Nat Commun ; 8(1): 1579, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146963

RESUMO

Pure spin currents provide the possibility to control the magnetization state of conducting and insulating magnetic materials. They allow one to increase or reduce the density of magnons, and achieve coherent dynamic states of magnetization reminiscent of the Bose-Einstein condensation. However, until now there was no direct evidence that the state of the magnon gas subjected to spin current can be treated thermodynamically. Here, we show experimentally that the spin current generated by the spin-Hall effect drives the magnon gas into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...