Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 112(3): 973-991, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31240776

RESUMO

When the Lyme disease spirochete, Borrelia burgdorferi, transfers from a feeding tick into a human or other vertebrate host, the bacterium produces vertebrate-specific proteins and represses factors needed for arthropod colonization. Previous studies determined that the B. burgdorferi BpuR protein binds to its own mRNA and autoregulates its translation, and also serves as co-repressor of erp transcription. Here, we demonstrate that B. burgdorferi controls transcription of bpuR, expressing high levels of bpuR during tick colonization but significantly less during mammalian infection. The master regulator of chromosomal replication, DnaA, was found to bind specifically to a DNA sequence that overlaps the bpuR promoter. Cultured B. burgdorferi that were genetically manipulated to produce elevated levels of BpuR exhibited altered levels of several proteins, although BpuR did not impact mRNA levels. Among these was the SodA superoxide dismutase, which is essential for mammalian infection. BpuR bound to sodA mRNA in live B. burgdorferi, and a specific BpuR-binding site was mapped 5' of the sodA open reading frame. Recognition of posttranscriptional regulation of protein levels by BpuR adds another layer to our understanding of the B. burgdorferi regulome, and provides further evidence that bacterial protein levels do not always correlate directly with mRNA levels.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , Proteínas de Ligação a RNA/metabolismo , Superóxido Dismutase/metabolismo , Carrapatos/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C3H , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Superóxido Dismutase/genética
2.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632088

RESUMO

The SpoVG protein of Borrelia burgdorferi, the Lyme disease spirochete, binds to specific sites of DNA and RNA. The bacterium regulates transcription of spoVG during the natural tick-mammal infectious cycle and in response to some changes in culture conditions. Bacterial levels of spoVG mRNA and SpoVG protein did not necessarily correlate, suggesting that posttranscriptional mechanisms also control protein levels. Consistent with this, SpoVG binds to its own mRNA, adjacent to the ribosome-binding site. SpoVG also binds to two DNA sites in the glpFKD operon and to two RNA sites in glpFKD mRNA; that operon encodes genes necessary for glycerol catabolism and is important for colonization in ticks. In addition, spirochetes engineered to dysregulate spoVG exhibited physiological alterations.IMPORTANCEB. burgdorferi persists in nature by cycling between ticks and vertebrates. Little is known about how the bacterium senses and adapts to each niche of the cycle. The present studies indicate that B. burgdorferi controls production of SpoVG and that this protein binds to specific sites of DNA and RNA in the genome and transcriptome, respectively. Altered expression of spoVG exerts effects on bacterial replication and other aspects of the spirochete's physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/crescimento & desenvolvimento , DNA Bacteriano/genética , Feminino , Glicerol/metabolismo , Humanos , Doença de Lyme/transmissão , Camundongos , Camundongos Endogâmicos C3H , Óperon , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Carrapatos/microbiologia , Carrapatos/fisiologia
4.
mBio ; 7(2): e00404-16, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27094329

RESUMO

UNLABELLED: In many bacteria, the FtsH protease and its modulators, HflK and HflC, form a large protein complex that contributes to both membrane protein quality control and regulation of the cellular response to environmental stress. Both activities are crucial to the Lyme disease pathogen Borrelia burgdorferi, which depends on membrane functions, such as motility, protein transport, and cell signaling, to respond to rapid changes in its environment. Using an inducible system, we demonstrate that FtsH production is essential for both mouse and tick infectivity and for in vitro growth of B. burgdorferi FtsH depletion in B. burgdorferi cells resulted in membrane deformation and cell death. Overproduction of the protease did not have any detectable adverse effects on B. burgdorferi growth in vitro, suggesting that excess FtsH does not proteolytically overwhelm its substrates. In contrast, we did not observe any phenotype for cells lacking the protease modulators HflK and HflC (ΔHflK/C), although we examined morphology, growth rate, growth under stress conditions, and the complete mouse-tick infectious cycle. Our results demonstrate that FtsH provides an essential function in the life cycle of the obligate pathogen B. burgdorferi but that HflK and HflC do not detectably affect FtsH function. IMPORTANCE: Lyme disease is caused by Borrelia burgdorferi, which is maintained in nature in an infectious cycle alternating between small mammals and Ixodes ticks. B. burgdorferi produces specific membrane proteins to successfully infect and persist in these diverse organisms. We hypothesized that B. burgdorferi has a specific mechanism to ensure that membrane proteins are properly folded and biologically active when needed and removed if improperly folded or dysfunctional. Our experiments demonstrate that FtsH, a protease that fulfills this role in other microorganisms, is essential to B. burgdorferi viability. Cells depleted of FtsH do not survive in laboratory culture medium and cannot colonize mice or ticks, revealing an absolute requirement for this protease. However, the loss of two potential modulators of FtsH activity, HflK and HflC, does not detectably affect B. burgdorferi physiology. Our results provide the groundwork for the identification of FtsH substrates that are critical for the bacterium's viability.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/enzimologia , Borrelia burgdorferi/crescimento & desenvolvimento , Ixodes/microbiologia , Doença de Lyme/microbiologia , Peptídeo Hidrolases/metabolismo , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Viabilidade Microbiana , Peptídeo Hidrolases/genética
5.
Parasit Vectors ; 9: 129, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26951688

RESUMO

BACKGROUND: Borrelia burgdorferi, the tick-transmitted agent of Lyme disease, adapts to different environments as it cycles between an arthropod vector and vertebrate host. Signals encountered during nymphal tick feeding prior to transmission activate a regulon that is controlled by the alternative sigma factors RpoN and RpoS, which are required for mammalian infection. The ingested bloodmeal also provides nutrients that stimulate spirochete replication. Although the influence of tick feeding on spirochete growth and gene expression is well documented, a quantitative assessment of spirochete virulence before and after tick feeding has not been made. METHODS: Homogenates were prepared from unfed and fed infected Ixodes scapularis nymphs that had acquired B. burgdorferi as larvae. Serially diluted tick homogenates were needle-inoculated into mice to determine the infectious dose of tick-derived spirochetes before and after the bloodmeal. Mouse infection was assessed by sero-reactivity with B. burgdorferi whole cell lysates on immunoblots and attempted isolation of spirochetes from mouse tissues. Viable spirochetes in tick-derived inocula were quantified by colony formation in solid media. RESULTS: We found that an inoculum containing as many as 10(4) B. burgdorferi from unfed ticks is largely non-infectious, while the calculated ID50 for spirochetes from fed ticks is ~30 organisms. Engineered constitutive production of the essential virulence factor OspC by spirochetes within unfed ticks did not confer an infectious phenotype. CONCLUSION: Conditional priming of B. burgdorferi during tick feeding induces changes in addition to OspC that are required for infection of the mammalian host.


Assuntos
Sangue , Borrelia burgdorferi/efeitos dos fármacos , Borrelia burgdorferi/patogenicidade , Ixodes/microbiologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Doença de Lyme/microbiologia , Doença de Lyme/patologia , Camundongos , Virulência
6.
Infect Immun ; 84(5): 1565-1573, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953324

RESUMO

Borrelia burgdorferi, a Lyme disease agent, makes different major outer surface lipoproteins at different stages of its mouse-tick infectious cycle. Outer surface protein A (OspA) coats the spirochetes from the time they enter ticks until they are transmitted to a mammal. OspA is required for normal tick colonization and has been shown to bind a tick midgut protein, indicating that OspA may serve as a tick midgut adhesin. Tick colonization by spirochetes lacking OspA is increased when the infecting blood meal is derived from mice that do not produce antibody, indicating that OspA may protect the spirochetes from host antibody, which will not recognize tick-specific proteins such as OspA. To further study the importance of OspA during tick colonization, we constructed a form of B. burgdorferi in which the ospA open reading frame, on lp54, was replaced with the ospC gene or the ospB gene, encoding a mammal-specific or tick-specific lipoprotein, respectively. These fusions yielded a strain that produces OspC within a tick (from the fusion gene) and during early mammalian infection (from the normal ospC locus) and a strain that produces OspB in place of OspA within ticks. Here we show that the related, tick-specific protein OspB can fully substitute for OspA, whereas the unrelated, mammal-specific protein OspC cannot. These data were derived from three different methods of infecting ticks, and they confirm and extend previous studies indicating that OspA both protects spirochetes within ticks from mammalian antibody and serves an additional role during tick colonization.


Assuntos
Antígenos de Bactérias/metabolismo , Antígenos de Superfície/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/metabolismo , Borrelia burgdorferi/crescimento & desenvolvimento , Lipoproteínas/metabolismo , Carrapatos/microbiologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/genética , Borrelia burgdorferi/imunologia , Deleção de Genes , Expressão Gênica , Lipoproteínas/genética , Camundongos , Camundongos SCID , Recombinação Genética
7.
Appl Environ Microbiol ; 81(3): 1038-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452278

RESUMO

Targeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirochete Borrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers than B. burgdorferi plasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle. B. burgdorferi has over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochete in vivo but relatively unstable during in vitro cultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number and in vivo stability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into the bbe02 locus, a site on lp25 that was previously shown to be nonessential during both in vitro and in vivo growth. We demonstrate the functional utility of this strategy by restoring infectivity to an ospC mutant through complementation at this site on lp25 and stable maintenance of the ospC gene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation in B. burgdorferi.


Assuntos
Borrelia burgdorferi/genética , Teste de Complementação Genética , Vetores Genéticos , Genética Microbiana/métodos , Biologia Molecular/métodos , Plasmídeos , Animais , Borrelia burgdorferi/crescimento & desenvolvimento , Modelos Animais de Doenças , Instabilidade Genômica , Doença de Lyme/microbiologia , Camundongos
8.
PLoS One ; 9(6): e101009, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24979342

RESUMO

Borrelia burgdorferi is a zoonotic pathogen whose maintenance in nature depends upon an infectious cycle that alternates between a tick vector and mammalian hosts. Lyme disease in humans results from transmission of B. burgdorferi by the bite of an infected tick. The population dynamics of B. burgdorferi throughout its natural infectious cycle are not well understood. We addressed this topic by assessing the colonization, dissemination and persistence of B. burgdorferi within and between the disparate mammalian and tick environments. To follow bacterial populations during infection, we generated seven isogenic but distinguishable B. burgdorferi clones, each with a unique sequence tag. These tags resulted in no phenotypic changes relative to wild type organisms, yet permitted highly sensitive and specific detection of individual clones by PCR. We followed the composition of the spirochete population throughout an experimental infectious cycle that was initiated with a mixed inoculum of all clones. We observed heterogeneity in the spirochete population disseminating within mice at very early time points, but all clones displayed the ability to colonize most mouse tissues by 3 weeks of infection. The complexity of clones subsequently declined as murine infection persisted. Larval ticks typically acquired a reduced and variable number of clones relative to what was present in infected mice at the time of tick feeding, and maintained the same spirochete population through the molt to nymphs. However, only a random subset of infectious spirochetes was transmitted to naïve mice when these ticks next fed. Our results clearly demonstrate that the spirochete population experiences stochastic bottlenecks during both acquisition and transmission by the tick vector, as well as during persistent infection of its murine host. The experimental system that we have developed can be used to further explore the forces that shape the population of this vector-borne bacterial pathogen throughout its infectious cycle.


Assuntos
Borrelia burgdorferi/crescimento & desenvolvimento , Doença de Lyme/microbiologia , Animais , Células Clonais , DNA Espaçador Ribossômico/genética , Comportamento Alimentar , Humanos , Larva/microbiologia , Camundongos , Reação em Cadeia da Polimerase , Carrapatos/microbiologia
9.
PLoS Pathog ; 10(6): e1004260, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24950221

RESUMO

Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable.Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pnc A gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice.Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. The bbk46 gene was dispensable for B. burgdorferi infection in mice. Our findings highlight the power of the IVET-based approach for identification of B. burgdorferi in vivo-expressed genes, which might not be discovered using other genome-wide gene expression methods. Further investigation of the novel in vivo-expressed candidate genes will contribute to advancing the understanding of molecular mechanisms of B.burgdorferi survival and pathogenicity in the mammalian host.


Assuntos
Borrelia burgdorferi/imunologia , Borrelia burgdorferi/patogenicidade , Doença de Lyme/imunologia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Virulência/genética , Sequência de Aminoácidos , Animais , Borrelia burgdorferi/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Genótipo , Doença de Lyme/genética , Doença de Lyme/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Fases de Leitura Aberta/genética , Fenótipo , Alinhamento de Sequência , Transcriptoma/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/imunologia
10.
mBio ; 5(2): e01017-14, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24692636

RESUMO

The Lyme disease spirochete Borrelia burgdorferi senses and responds to environmental cues as it transits between the tick vector and vertebrate host. Failure to properly adapt can block transmission of the spirochete and persistence in either vector or host. We previously identified BBD18, a novel plasmid-encoded protein of B. burgdorferi, as a putative repressor of the host-essential factor OspC. In this study, we investigate the in vivo role of BBD18 as a regulatory protein, using an experimental mouse-tick model system that closely resembles the natural infectious cycle of B. burgdorferi. We show that spirochetes that have been engineered to constitutively produce BBD18 can colonize and persist in ticks but do not infect mice when introduced by either tick bite or needle inoculation. Conversely, spirochetes lacking BBD18 can persistently infect mice but are not acquired by feeding ticks. Through site-directed mutagenesis, we have demonstrated that abrogation of spirochete infection in mice by overexpression of BBD18 occurs only with bbd18 alleles that can suppress OspC synthesis. Finally, we demonstrate that BBD18-mediated regulation does not utilize a previously described ospC operator sequence required by B. burgdorferi for persistence in immunocompetent mice. These data lead us to conclude that BBD18 does not represent the putative repressor utilized by B. burgdorferi for the specific downregulation of OspC in the mammalian host. Rather, we suggest that BBD18 exhibits features more consistent with those of a global regulatory protein whose critical role occurs during spirochete acquisition by feeding ticks. IMPORTANCE Lyme disease, caused by Borrelia burgdorferi, is the most common arthropod-borne disease in North America. B. burgdorferi is transmitted to humans and other vertebrate hosts by ticks as they take a blood meal. Transmission between vectors and hosts requires the bacterium to sense changes in the environment and adapt. However, the mechanisms involved in this process are not well understood. By determining how B. burgdorferi cycles between two very different environments, we can potentially establish novel ways to interfere with transmission and limit infection of this vector-borne pathogen. We are studying a regulatory protein called BBD18 that we recently described. We found that too much BBD18 interferes with the spirochete's ability to establish infection in mice, whereas too little BBD18 appears to prevent colonization in ticks. Our study provides new insight into key elements of the infectious cycle of the Lyme disease spirochete.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/fisiologia , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Análise Mutacional de DNA , Feminino , Deleção de Genes , Expressão Gênica , Camundongos , Mutagênese Sítio-Dirigida
11.
PLoS Pathog ; 9(8): e1003567, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009501

RESUMO

Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable. Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pncA gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice. Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. Immunocompetent mice inoculated with spirochetes lacking bbk46 seroconverted but no spirochetes were recovered from mouse tissues three weeks post inoculation. However, the bbk46 gene was not required for B. burgdorferi infection of immunodeficient mice. Therefore, through an initial IVET screen in B. burgdorferi we have identified a novel in vivo-induced virulence factor critical for the ability of the spirochete to evade the humoral immune response and persistently infect mice.


Assuntos
Proteínas de Bactérias/biossíntese , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidade , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Doença de Lyme/metabolismo , Fatores de Virulência/biossíntese , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Modelos Animais de Doenças , Feminino , Doença de Lyme/genética , Doença de Lyme/patologia , Camundongos , Fatores de Virulência/genética
12.
Infect Immun ; 81(8): 2986-96, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23753630

RESUMO

Borrelia burgdorferi, the bacterium that causes Lyme disease, has a unique segmented genome consisting of numerous linear and circular plasmids and a linear chromosome. Many of these genetic elements have been found to encode factors critical for B. burgdorferi to complete the infectious cycle. However, several plasmids remain poorly characterized, and their roles during infection with B. burgdorferi have not been elucidated. To more fully characterize the role of one of the four 28-kb linear plasmids, lp28-3, we generated strains specifically lacking lp28-3 and assayed the contribution of genes carried by lp28-3 to B. burgdorferi infection. We found that lp28-3 does not carry any genes that are strictly required for infection of a mouse or tick and that lp28-3-deficient spirochetes are competent at causing a disseminated infection. Interestingly, spirochetes containing lp28-3 were at a selective advantage compared to lp28-3-deficient spirochetes when coinjected into a mouse, and this advantage was reflected in the population of spirochetes acquired by feeding ticks. Our data demonstrate that genes carried by lp28-3, although not essential, contribute to the fitness of B. burgdorferi during infection.


Assuntos
Infecções por Borrelia/genética , Borrelia burgdorferi/genética , Aptidão Genética/genética , Plasmídeos/genética , Animais , Southern Blotting , Modelos Animais de Doenças , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Seleção Genética/genética , Carrapatos/parasitologia
13.
Mol Microbiol ; 89(2): 216-27, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23692497

RESUMO

Borrelia burgdorferi alternates between ticks and mammals, requiring variable gene expression and protein production to adapt to these diverse niches. These adaptations include shifting among the major outer surface lipoproteins OspA, OspC, and VlsE at different stages of the infectious cycle. We hypothesize that these proteins carry out a basic but essential function, and that OspC and VlsE fulfil this requirement during early and persistent stages of mammalian infection respectively. Previous work by other investigators suggested that several B. burgdorferi lipoproteins, including OspA and VlsE, could substitute for OspC at the initial stage of mouse infection, when OspC is transiently but absolutely required. In this study, we assessed whether vlsE and ospA could restore infectivity to an ospC mutant, and found that neither gene product effectively compensated for the absence of OspC during early infection. In contrast, we determined that OspC production was required by B. burgdorferi throughout SCID mouse infection if the vlsE gene were absent. Together, these results indicate that OspC can substitute for VlsE when antigenic variation is unnecessary, but that these two abundant lipoproteins are optimized for their related but specific roles during early and persistent mammalian infection by B. burgdorferi.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/patogenicidade , Lipoproteínas/metabolismo , Animais , Variação Antigênica , Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Lipoproteínas/genética , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Mutação
14.
Infect Immun ; 81(6): 2012-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529620

RESUMO

The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/microbiologia , Movimento/fisiologia , Animais , Borrelia burgdorferi/citologia , Borrelia burgdorferi/genética , Flagelina/genética , Flagelina/metabolismo , Doença de Lyme/transmissão , Camundongos , Camundongos Endogâmicos C3H , Mutação , Ninfa/microbiologia
15.
Infect Immun ; 80(10): 3501-11, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22851744

RESUMO

Linear plasmid lp54 is one of the most highly conserved and differentially expressed elements of the segmented genome of the Lyme disease spirochete Borrelia burgdorferi. We previously reported that deletion of a 4.1-kb region of lp54 (bba01 to bba07 [bba01-bba07]) led to a slight attenuation of tick-transmitted infection in mice following challenge with a large number of infected ticks. In the current study, we reduced the number of ticks in the challenge to more closely mimic the natural dose and found a profound defect in tick-transmitted infection of the bba01-bba07 mutant relative to wild-type B. burgdorferi. We next focused on deletion of bba03 as the most likely cause of this mutant phenotype, as previous studies have shown that expression of bba03 is increased by culture conditions that simulate tick feeding. Consistent with this hypothesis, we demonstrated increased expression of bba03 by spirochetes in fed relative to unfed ticks. We also observed that a bba03 deletion mutant, although fully competent by itself, did not efficiently infect mice when transmitted by ticks that were simultaneously coinfected with wild-type B. burgdorferi. These results suggest that BBA03 provides a competitive advantage to spirochetes carrying this protein during tick transmission to a mammalian host in the natural infectious cycle.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Borrelia/microbiologia , Borrelia burgdorferi/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ixodes/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Borrelia/transmissão , Borrelia burgdorferi/genética , Feminino , Trato Gastrointestinal/microbiologia , Deleção de Genes , Camundongos , Mutação
16.
Infect Immun ; 79(9): 3510-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21708994

RESUMO

Borrelia burgdorferi, the causative agent of Lyme disease, exists in a complex enzootic cycle, transiting between its vector, Ixodes ticks, and a diverse range of vertebrate hosts. B. burgdorferi linear plasmid 38 (lp38) contains several genes that are differentially regulated in response to conditions mimicking the tick or mouse environments, suggesting that these plasmid-borne genes may encode proteins important for the B. burgdorferi infectious cycle. Some of these genes encode potential virulence factors, including hypothetical lipoproteins as well as a putative membrane transport system. To characterize the role of lp38 in the B. burgdorferi infectious cycle, we constructed a shuttle vector to selectively displace lp38 from the B. burgdorferi genome and analyzed the resulting clones to confirm the loss of lp38. We found that, in vitro, clones lacking lp38 were similar to isogenic wild-type bacteria, both in growth rate and in antigenic protein production. We analyzed these strains in an experimental mouse-tick infectious cycle, and our results demonstrate that clones lacking lp38 are fully infectious in a mouse, can efficiently colonize the tick vector, and are readily transmitted to a naive host.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/microbiologia , Plasmídeos , Fatores de Virulência/genética , Animais , Borrelia burgdorferi/patogenicidade , Feminino , Vetores Genéticos , Camundongos
17.
J Bacteriol ; 193(5): 1161-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193609

RESUMO

The restriction-modification (R-M) systems of many bacteria present a barrier to the stable introduction of foreign DNA. The Lyme disease spirochete Borrelia burgdorferi has two plasmid-borne putative R-M genes, bbe02 and bbq67, whose presence limits transformation by shuttle vector DNA from Escherichia coli. We show that both the bbe02 and bbq67 loci in recipient B. burgdorferi limit transformation with shuttle vector DNA from E. coli, irrespective of its dam, dcm, or hsd methylation status. However, plasmid DNA purified from B. burgdorferi transformed naïve B. burgdorferi much more efficiently than plasmid DNA from E. coli, particularly when the bbe02 and bbq67 genotypes of the B. burgdorferi DNA source matched those of the recipient. We detected adenine methylation of plasmid DNA prepared from B. burgdorferi that carried bbe02 and bbq67. These results indicate that the bbe02 and bbq67 loci of B. burgdorferi encode distinct R-M enzymes that methylate endogenous DNA and cleave foreign DNA lacking the same sequence-specific modification. Our findings have basic implications for horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. Further characterization and identification of the nucleotide sequences recognized by BBE02 and BBQ67 will facilitate efficient genetic manipulation of this pathogenic spirochete.


Assuntos
Borrelia burgdorferi/metabolismo , Enzimas de Restrição-Modificação do DNA/metabolismo , Doença de Lyme/microbiologia , Plasmídeos/metabolismo , Animais , Sequência de Bases , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/genética , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica/fisiologia , Transferência Genética Horizontal , Humanos , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Mutação , Plasmídeos/genética
18.
Infect Immun ; 78(6): 2397-407, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20231410

RESUMO

Borrelia burgdorferi, the causative agent of Lyme disease, has a complex genome consisting of a linear chromosome and up to 21 linear and circular plasmids. These plasmids encode numerous proteins critical to the spirochete's infectious cycle and many hypothetical proteins whose functions and requirements are unknown. The conserved linear plasmid lp54 encodes several proteins important for survival in the mouse-tick infectious cycle, but the majority of the proteins are of unknown function and lack homologs outside the borreliae. In this study we adapted the Cre-lox recombination system to create large deletions in the B. burgdorferi genome. Using Cre-lox, we systematically investigated the contribution of 14 adjacent genes on the left arm of lp54 to the overall infectivity of B. burgdorferi. The deletion of the region of lp54 encompassing bba07 to bba14 had no significant effect on the infectious cycle of B. burgdorferi. The deletion of bba01 to bba07 resulted in a slight growth defect but did not significantly affect the ability of B. burgdorferi to complete the infectious cycle. This study demonstrated the utility of the Cre-lox system to efficiently explore gene requirements in B. burgdorferi and surprisingly revealed that a large number of the highly conserved proteins encoded on lp54 are not required to complete the infectious cycle.


Assuntos
Proteínas de Bactérias/fisiologia , Borrelia burgdorferi/patogenicidade , Ixodes/microbiologia , Plasmídeos , Recombinação Genética , Fatores de Virulência/fisiologia , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Feminino , Integrases/metabolismo , Camundongos , Deleção de Sequência , Fatores de Virulência/genética
19.
J Bacteriol ; 191(20): 6231-41, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19666713

RESUMO

Pathogens lacking the enzymatic pathways for de novo purine biosynthesis are required to salvage purines and pyrimidines from the host environment for synthesis of DNA and RNA. Two key enzymes in purine salvage pathways are IMP dehydrogenase (GuaB) and GMP synthase (GuaA), encoded by the guaB and guaA genes, respectively. While these genes are typically found on the chromosome in most bacterial pathogens, the guaAB operon of Borrelia burgdorferi is present on plasmid cp26, which also harbors a number of genes critical for B. burgdorferi viability. Using molecular genetics and an experimental model of the tick-mouse infection cycle, we demonstrate that the enzymatic activities encoded by the guaAB operon are essential for B. burgdorferi mouse infectivity and provide a growth advantage to spirochetes in the tick. These data indicate that the GuaA and GuaB proteins are critical for the survival of B. burgdorferi in the infection cycle and highlight a potential difference in the requirements for purine salvage in the disparate mammalian and tick environments.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , IMP Desidrogenase/metabolismo , Doença de Lyme/transmissão , Carrapatos/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Carbono-Nitrogênio Ligases/genética , Divisão Celular/genética , Divisão Celular/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , IMP Desidrogenase/genética , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Óperon , Purinas/metabolismo
20.
Antimicrob Agents Chemother ; 53(10): 4490-4, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19651916

RESUMO

We hypothesize a potential role for Borrelia burgdorferi OspC in innate immune evasion at the initial stage of mammalian infection. We demonstrate that B. burgdorferi is resistant to high levels (>200 microg/ml) of cathelicidin and that this antimicrobial peptide exhibits limited binding to the spirochetal outer membrane, irrespective of OspC or other abundant surface lipoproteins. We conclude that the essential role of OspC is unrelated to resistance to this component of innate immunity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas da Membrana Bacteriana Externa/fisiologia , Borrelia burgdorferi/efeitos dos fármacos , Lipoproteínas/fisiologia , Anti-Infecciosos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Borrelia burgdorferi/genética , Farmacorresistência Bacteriana/genética , Imunidade Inata/genética , Lipoproteínas/genética , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...