Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396563

RESUMO

Tenebrio molitor (TM) is considered as one of the most promising protein sources for replacing fish meal in aquafeeds, among other things because it is rich in protein, a good source of micronutrients and has a low carbon footprint and land use. However, the main drawback of TM is its fatty acid profile, in particular its low content of n-3 PUFA. This study evaluates the effects of partially replacing plant or marine-derived with full-fat TM meal at two different levels on growth performance and lipid profiles of Senegalese sole (Solea senegalensis). For this purpose, a control diet (CTRL) and four experimental isoproteic (53%) and isolipidic (16%) diets were formulated containing 5 and 10% TM meal replacing mostly fish meal (FM5 and FM10), or 10 and 15% TM meal replacing mostly plant meal (PP10 and PP15). Fish (215 g) were fed at 1% of their body weight for 98 days. The final body weight of fish fed the experimental diets containing TM meal was not different from that of fish fed the CTRL diet (289 g). However, the inclusion of TM meal resulted in a gradual improvement in growth rate and feed efficiency in both cases (replacement of fish or plant meals), and significant differences in specific growth rate (SGR) were observed between fish fed the CTRL diet (SGR = 0.30% day-1) and those fed diets with the highest TM meal content (PP15; SGR = 0.35% day-1). The experimental groups did not show any differences in the protein content of the muscle (19.6% w/w). However, significant differences were observed in the total lipid content of the muscle, with the FM10, PP10, and PP15 groups having the lowest muscle lipid contents (2.2% ww). These fish also showed the lowest neutral lipid content in muscle (6.6% dw), but no differences were observed in the total phospholipid content (2.6% dw). Regarding the fatty acid profile, fish fed FM10, PP10 and PP15 had lower levels of linoleic acid (18:2n-6) and higher levels of oleic acid (18:1n-9) in liver and muscle compared to fish fed CTRL. However, no differences were found between fish fed CTRL and TM-based diets for docosahexaenoic acid (22:6n-3) and total n-3 PUFA in liver and muscle. In conclusion, our study demonstrated that full-fat TM inclusion up to 15% in S. senegalensis diets had no negative effects or even some positive effects on fish survival, growth performance, nutrient utilization and flesh quality.

3.
PLoS One ; 18(7): e0288659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440588

RESUMO

Fish exposed to water supersaturated with dissolved gas experience gas embolism similar to decompression sickness (DCS), known as gas bubble disease (GBD) in fish. GBD has been postulated as an alternative to traditional mammals' models on DCS. Gas embolism can cause mechanical and biochemical damage, generating pathophysiological responses. Increased expression of biomarkers of cell damage such as the heat shock protein (HSP) family, endothelin 1 (ET-1) or intercellular adhesion molecule 1 (ICAM-1) has been observed, being a possible target for further studies of gas embolism. The GBD model consisted of exposing fish to supersaturation in water with approximately 170% total dissolved gas (TDG) for 18 hours, producing severe gas embolism. This diagnosis was confirmed by a complete histopathological exam and the gas score method. HSP70 showed a statistically significant upregulation compared to the control in all the studied organs (p <0.02). Gills and heart showed upregulation of HSP90 with statistical significance (p = 0.015 and p = 0.02, respectively). In addition, HSP70 gene expression in gills was positively correlated with gas score (p = 0.033). These results suggest that gas embolism modify the expression of different biomarkers, with HSP70 being shown as a strong marker of this process. Furthermore, gas score is a useful tool to study the abundance of gas bubbles, although individual variability always remains present. These results support the validity of the GBD model in fish to study gas embolism in diseases such as DCS.


Assuntos
Doença da Descompressão , Embolia Aérea , Animais , Embolia Aérea/genética , Peixes , Água , Proteínas de Choque Térmico HSP70/genética , Expressão Gênica , Doença da Descompressão/genética , Mamíferos
4.
Antioxidants (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36670998

RESUMO

This study investigated the influence of dietary astaxanthin (AX) on glucose and lipid metabolism in rainbow trout liver. Two iso-nitrogenous and iso-lipidic diets were tested for 12 weeks in rainbow trout with an initial mean weight of 309 g. The S-ASTA diet was supplemented with 100 mg of synthetic AX per kg of feed, whereas the control diet (CTRL) had no AX. Fish fed the S-ASTA diet displayed lower neutral and higher polar lipids in the liver, associated with smaller hepatocytes and lower cytoplasm vacuolization. Dietary AX upregulated adipose triglyceride lipase (atgl), hormone-sensitive lipase (hsl2) and 1,2-diacylglycerol choline phosphotransferase (chpt), and downregulated diacylglycerol acyltransferase (dgat2), suggesting the AX's role in triacylglycerol (TAG) turnover and phospholipid (PL) synthesis. Dietary AX may also affect beta-oxidation with the upregulation of carnitine palmitoyltransferase 1 (cpt1α2). Although hepatic cholesterol levels were not affected, dietary AX increased gene expression of sterol regulatory element-binding protein 2 (srebp2). Dietary AX upregulated the expression of 6-phosphogluconate dehydrogenase (6pgdh) and downregulated pyruvate kinase (pkl). Overall, results suggest that dietary AX modulates the oxidative phase of the pentose phosphate pathway and the last step of glycolysis, affecting TAG turnover, ß-oxidation, PL and cholesterol synthesis in rainbow trout liver.

5.
Curr Opin Plant Biol ; 71: 102323, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36508933

RESUMO

There is a growing recognition of the challenges associated with ensuring good nutrition for all without compromising the environment. This is particularly true for aquaculture, given the reliance on marine extraction for key feed ingredients, yet at the same time it delivers key nutrients such as omega-3 long chain polyunsaturated fatty acids. This review will consider progress in transitioning away from oceanic-derived fish oils as feed ingredients, focusing on the emerging transgenic plant sources of these fatty acids. Specific consideration is given to the "validation" phase of this process, in which oils from GM plants are used as substitutes for bona fide fish oils in aquafeed diets. Equally, consideration is given to the demonstration of "real-world" potential by GM field trials. Collectively, the status of these new plant-based sources of omega-3 fish oils confirm the arrival of a new wave of plant biotech products, 25 years after the introduction of herbicide-tolerant input traits and demonstrate the power of GM agriculture to contribute to food security and operating within planetary boundaries.


Assuntos
Ácidos Graxos Ômega-3 , Óleos de Peixe , Plantas Geneticamente Modificadas/genética , Aquicultura , Ácidos Graxos , Óleos de Plantas
6.
Fish Shellfish Immunol ; 131: 160-171, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210005

RESUMO

The role of subcutaneous adipose tissue adipocytes and the effects of fatty acids on carrageenan-induced skin inflammation in gilthead seabream (Sparus aurata) were studied. Fish were injected intramuscularly with phosphate-buffered saline (control) or λ-carrageenin (1%), and skin samples collected at the injection site at 3 and 6 h post-injection (p.i.) were processed for histological study. In addition, the presence and levels of lipid classes, fatty acid methyl esters (FAME) and eicosanoids were evaluated in the skin samples obtained from the injected areas. Histological results indicated an increase in adipocyte area in fish sampled at 3 h p.i. with λ-carrageenin compared to fish in the control group. Furthermore, the frequency of adipocytes between 4500 and 5000 µm2 was increased at 6 h in the λ-carrageenin group compared to the control group. Analysis of lipid classes found that fish injected with λ-carrageenan showed increased free fatty acid (FFA) and sphingomyelin content at 3 and 6 h, respectively, compared to the control group. An increase in saturated fatty acids (SFA), n-6 polyunsaturated fatty acids (PUFA), and a decrease in the values of monounsaturated fatty acids (MUFA), n-3 PUFA and minor fatty acids were observed in fish skin at 6 h after λ-carrageenin injection, with respect to the values obtained in the control group. Regarding the analysis of eicosanoids, an increase in hydroxyeicosatetraenoic acid (5-HETE) was detected in the skin of fish at 6 h post-carrageenin injection compared to the control group. The presented results indicate the contribution of adipocytes and fatty acids in the development and regulation of the inflammatory response triggered by λ-carrageenin in gilthead seabream skin.


Assuntos
Dourada , Animais , Dourada/fisiologia , Ácidos Graxos/análise , Carragenina , Dieta , Adipócitos , Gordura Subcutânea/química , Inflamação/induzido quimicamente , Inflamação/veterinária
7.
Metabolites ; 12(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144255

RESUMO

The development and inclusion of novel oils derived from genetically modified (GM) oilseeds into aquafeeds, to supplement and supplant current terrestrial oilseeds, as well as fish oils, warrants a more thorough investigation into lipid biochemical alterations within finfish species, such as Atlantic salmon. Five tissues were examined across two harvesting timepoints to establish whether lipid isomeric alterations could be detected between a standard commercial diet versus a diet that incorporated the long-chain polyunsaturated fatty acids (LC-PUFA), EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid), derived from the GM oilseed Camelina sativa. Tissue-dependent trends were detected, indicating that certain organs, such as the brain, have a basal limit to LC-PUFA incorporation, though enrichment of these fatty acids is possible. Lipid acyl alterations, as well as putative stereospecific numbering (sn) isomer alterations, were also detected, providing evidence that GM oils may modify lipid structure, with lipids of interest providing a set of targeted markers by which lipid alterations can be monitored across various novel diets.

8.
Sci Rep ; 12(1): 6592, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449183

RESUMO

Decompression sickness (DCS) is a clinical syndrome caused by the formation of systemic intravascular and extravascular gas bubbles. The presence of these bubbles in blood vessels is known as gas embolism. DCS has been described in humans and animals such as sea turtles and cetaceans. To delve deeper into DCS, experimental models in terrestrial mammals subjected to compression/decompression in a hyperbaric chamber have been used. Fish can suffer from gas bubble disease (GBD), characterized by the formation of intravascular and extravascular systemic gas bubbles, similarly to that observed in DCS. Given these similarities and the fact that fish develop this disease naturally in supersaturated water, they could be used as an alternative experimental model for the study of the pathophysiological aspect of gas bubbles. The objective of this study was to obtain a reproducible model for GBD in fish by an engineering system and a complete pathological study, validating this model for the study of the physiopathology of gas related lesions in DCS. A massive and severe GBD was achieved by exposing the fish for 18 h to TDG values of 162-163%, characterized by the presence of severe hemorrhages and the visualization of massive quantities of macroscopic and microscopic gas bubbles, systemically distributed, circulating through different large vessels of experimental fish. These pathological findings were the same as those described in small mammals for the study of explosive DCS by hyperbaric chamber, validating the translational usefulness of this first fish model to study the gas-bubbles lesions associated to DCS from a pathological standpoint.


Assuntos
Doença da Descompressão , Mergulho , Embolia Aérea , Tartarugas , Animais , Peixes , Mamíferos , Pressão
9.
Food Chem ; 372: 131289, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818734

RESUMO

Untargeted lipidomic analysis was conducted to explore how different dietary docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratio and, specifically, how an optimal ratio (2.3) compared to a suboptimum ratio (0.6) impacted lipid molecular species and the positional distribution of fatty acids in hepatopancreas of mud crab. The results indicated that major category of lipid affected by dietary DHA/EPA ratio was glycerophospholipids (GPs). The optimum dietary DHA/EPA ratio increased the contents of DHA bound to the sn-2 and sn-3 positions of phosphatidylcholine (PC) and triacylglycerol, EPA bound to the sn-2 position of phosphatidylcholine and 18:2n-6 bound to the sn-2 position of phosphatidylethanolamine (PE). Increased dietary DHA/EPA ratio also led to competition between arachidonic acid (ARA) and 18:2n-6 bound to esterified sites. Appropriate dietary DHA/EPA ratio can not only improve the growth performance and nutritional quality of mud crab, but also provide higher quality products for human consumers.


Assuntos
Braquiúros , Ácido Eicosapentaenoico , Animais , Braquiúros/genética , Ácidos Docosa-Hexaenoicos , Hepatopâncreas , Humanos , Lipidômica
10.
Antioxidants (Basel) ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36670887

RESUMO

Selenium (Se) is an essential trace element for fish with more than 40 selenoproteins identified, many exhibiting antioxidant functions. This study investigated the effect of dietary Se supplementation on physiological parameters, selenoprotein and antioxidant enzyme gene expression in Atlantic bluefin tuna (ABT, Thunnus thynnus) larvae. First-feeding ABT larvae were divided into triplicate groups and fed rotifers Brachionus rotundiformis enriched with five different levels of Se (0, 3, 10, 30, and 100 µg Se·L-1) until 14 days after hatching. Both rotifers and ABT larvae effectively accumulated Se achieving maximum levels in the Se100 treatment (30.05 µg Se·g-1 and 194 ± 38 µg Se·g-1 dry mass, respectively). Larvae showed highest total length when fed Se3 rotifers, whereas flexion index was highest in larvae fed Se10. Selenium supplementation increased the gene expression of selenoproteins gpx1, msrb1, trxr2, selenom, selenop, and selenoe compared to the non-supplemented control (Se0), but only marginal differences were detected between supplementation levels. In contrast, expression of the antioxidant enzymes cat and sod1 were lowest in larvae fed Se100. To conclude, non-Se-enriched rotifers may be suboptimal for first feeding ABT larvae, which showed improved selenoprotein and antioxidant gene expression when fed a diet containing 4.42 µg Se·g-1 dry mass.

11.
Aquat Toxicol ; 240: 105967, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34555743

RESUMO

While chromium (Cr) has been recognized as an essential nutrient for all animals, and dietary supplementation can be beneficial, it can also be toxic. The present study aimed to investigate the contrasting effects of dietary chromium in Pacific white shrimp Litopenaeus vannamei. Five experimental diets were formulated to contain Cr at levels of 0.82 (Cr0.82, unsupplemented diet), 1.01 (Cr1.01), 1.22 (Cu1.22), 1.43 (Cr1.43) and 1.63 (Cr1.63) mg/kg and were fed to shrimp for 8 weeks. Highest weight gain was recorded in shrimp fed the diet containing 1.22 mg/kg Cr. Shrimp fed the diet containing the highest level of Cr (1.63 mg/kg) showed the lowest weight gain and clear signs of oxidative stress and apoptosis as evidenced by higher levels of H2O2, malondialdehyde and 8-hydroxydeoxyguanosine, and expression of caspase 2, 3, 5, and lower contents of total and oxidized glutathione, and expression of Cu/Zn sod, cat, gpx, mt, bcl2. Chromium supplementation promoted glycolysis and inhibited gluconeogenesis as shown by increased activities of hexokinase, phosphofructokinase and pyruvate kinase, and reduced activity of phosphoenolpyruvate carboxykinase in shrimp fed the diet containing 1.43 mg/kg Cr. Shrimp fed the diet with 1.63 mg/kg Cr had lowest contents of crustacean hyperglycemic hormone and insulin like peptide in hemolymph. Expression of genes involved in insulin signaling pathway and glycose metabolism including insr, irs1, pik3ca, pdpk1, akt, acc1, gys, glut1, pk, hk were up-regulated, and foxO1, gsk-3ß, g6pc, pepck were down-regulated in shrimp fed the diets supplemented with Cr. This study demonstrated that optimum dietary supplementation of Cr had beneficial effects on glucose homeostasis and growth, whereas excess caused oxidative damage and impaired growth. The results contribute to our understanding of the biological functions of chromium in shrimp.


Assuntos
Penaeidae , Poluentes Químicos da Água , Ração Animal/análise , Animais , Cromo/toxicidade , Dieta , Suplementos Nutricionais/análise , Glucose , Glicogênio Sintase Quinase 3 beta , Homeostase , Peróxido de Hidrogênio , Imunidade Inata , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
12.
Front Immunol ; 12: 694720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248992

RESUMO

The present study aimed to elucidate the mechanism of dietary betaine, as a lipid-lowering substance, on the regulation of lipid metabolism and inflammation in juvenile black seabream (Acanthopagrus schlegelii) fed a high fat diet. An 8-week feeding trial was conducted in black seabream with an initial weight of 8.39 ± 0.01g fed four isonitrogenous diets including Control, medium-fat diet (11%); HFD, high-fat diet (17%); and HFD supplemented with two levels (10 and 20 g/kg) of betaine, HFD+B1 and HFD+B2, respectively. SGR and FE in fish fed HFD+B2 were significantly higher than in fish fed HFD. Liver histology revealed that vacuolar fat droplets were smaller and fewer in bream fed HFD supplemented with betaine compared to fish fed HFD. Betaine promoted the mRNA and protein expression levels of silent information regulator 1 (Sirt1), up-regulated mRNA expression and protein content of lipid peroxisome proliferator-activated receptor alpha (pparα), and down-regulated mRNA expression and protein content of sterol regulatory element-binding protein-1(srebp-1). Furthermore, the mRNA expression levels of anti-inflammatory cytokines in liver and intestine were up-regulated, while nuclear factor kB (nf-kb) and pro-inflammatory cytokines were down-regulated by dietary betaine supplementation. Likewise, in fish that received lipopolysaccharide (LPS) to stimulate inflammatory responses, the expression levels of mRNAs of anti-inflammatory cytokines in liver, intestine and kidney were up-regulated in fish fed HFD supplemented with betaine compared with fish fed HFD, while nf-kb and pro-inflammatory cytokines were down-regulated. This is the first report to suggest that dietary betaine could be an effective feed additive to alleviate hepatic steatosis and attenuate inflammatory responses in black seabream fed a high fat diet by modulating the Sirt1/Srebp-1/Pparɑ pathway.


Assuntos
Betaína/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Fígado Gorduroso/veterinária , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes/metabolismo , Inflamação/veterinária , Fígado/enzimologia , PPAR alfa/metabolismo , Dourada/metabolismo , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores Etários , Ração Animal , Animais , Citocinas/genética , Citocinas/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/imunologia , Fígado Gorduroso/prevenção & controle , Doenças dos Peixes/enzimologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Fígado/imunologia , PPAR alfa/genética , Dourada/genética , Dourada/imunologia , Sirtuína 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
13.
Food Chem ; 354: 129570, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33761340

RESUMO

While tissue fatty acid compositions reflect that of the dietary lipid source, little information is available on how dietary oils modify lipid class and molecular species profiles in hepatopancreas of crustacean. Herein, an 8-week nutritional trial and untargeted lipidomic analysis were used to investigate the impacts of dietary n-3 PUFA lipid sources including fish oil, krill oil and linseed oil on the lipidomic characteristics of hepatopancreas of swimming crab (Portunus trituberculatus). Dietary krill oil significantly increased distribution of 20:5n-3 and 22:6n-3 at sn-2 in phosphatidylcholine and phosphatidylethanolamine compared to fish oil. Fish oil intake promoted the deposition of 20:5n-3 and 22:6n-3 at sn-1,2,3 in triglyceride compared to linseed oil, which significantly increased the specific accumulation of 18:3n-3 at sn-1,3 in triglyceride and sn-2 in phosphatidylcholine and phosphatidylethanolamine. The study revealed metabolic responses to different dietary n-3 PUFA in swimming crab, which provided novel insight into the lipid nutrition of crustacean.


Assuntos
Braquiúros/efeitos dos fármacos , Braquiúros/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Lipidômica , Natação , Animais , Dieta , Estado Nutricional/efeitos dos fármacos
14.
J Comp Physiol B ; 191(3): 503-515, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33619590

RESUMO

The digestive system presents daily rhythms at both physiological and histological levels. Although cell morphology rhythms in mammals have been reported, they have scarcely been investigated in fish. The aim of the present research was to investigate the existence of daily rhythms in the morphology of cells in the liver and intestine of a teleost fish, the European sea bass (Dicentrarchus labrax), and how feeding time influences them. Regarding liver, we also focused on differences between the two metabolic zones: perivenous and periportal. For this purpose, fish were divided into two groups: fish fed once a day in the mid-light phase (ML) or the mid-dark phase (MD). After 1 month under each feeding regime, liver and intestine samples were collected every 4 h during a 24-h cycle, and different parameters were studied by light microscopy and image analysis. Daily rhythms occurred in most of the parameters evaluated in the liver. The effect of feeding time depended on the metabolic zone: the rhythms in the periportal zone were synchronized mainly by the light/dark cycle regardless of feeding time, whereas in the perivenous zone, rhythms were influenced more by feeding time. In the intestine, a daily rhythm in villi height was found with acrophases coinciding with feeding time in each group. These findings show for the first time the existence of cellular morphological rhythms in fish liver and intestine, and highlight the interactions between light and feeding cycles in the different metabolic zones of the liver.


Assuntos
Bass , Animais , Ritmo Circadiano , Comportamento Alimentar , Hepatócitos , Intestinos , Fígado
15.
Ecotoxicol Environ Saf ; 213: 112004, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581488

RESUMO

Salinity is one of the important factors affecting the physiological state of crustaceans in marine environments. Lipid plays major roles in energy supply and is main sources of essential fatty acids for membrane integrity, which is critical in adaptations to changes in salinity. Here we evaluated the effects of salinity (medium, 23 ppt and low, 4 ppt) and dietary lipid source (fish oil, FO and soybean oil, SO) on intestinal health of the marine crustacean mud crab Scylla paramamosain. The results indicated that low salinity and dietary SO (LSO group) significantly affected intestinal histomorphology, with a significant decrease of intestinal fold height and width as well as down-regulation of intestinal mRNA levels of tight junction genes compared to crab reared at medium salinity and fed FO diets (MFO group). Crabs reared at low salinity and fed SO showed an increased inflammatory response in intestine, which stimulated a physiological detoxification response together with apoptosis compared to crab in the MFO group. Low salinity and SO diets also could be responsible for multiply the pathogenic bacteria of Photobacterium and inhibit the beneficial bacteria of Firmicutes and Rhodobacteraceae in intestine, and act on a crucial impact on the development of intestinal microbial barrier disorders. The results of microbial function predictive analysis also support these inferences. The findings of the present study demonstrated that soybean oil as the main dietary lipid source could exacerbate the adverse effects of low salinity on intestinal health of mud crab, and provided evidence suggesting that dietary lipid source and fatty acid composition may play vital roles in intestinal health and the process of adaptation to environmental salinity in marine crustaceans.


Assuntos
Braquiúros/fisiologia , Exposição Dietética/estatística & dados numéricos , Óleo de Soja , Adaptação Fisiológica/genética , Animais , Braquiúros/genética , Dieta , Intestinos , RNA Mensageiro/genética , Salinidade
16.
Br J Nutr ; 125(8): 876-890, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32854790

RESUMO

An 8-week feeding trial was conducted to evaluate the effects of dietary n-3 LC-PUFA levels on growth performance, tissue fatty acid profiles and relative expression of genes involved in the lipid metabolism of mud crab (Scylla paramamosain). Ten isonitrogenous diets were formulated to contain five n-3 LC-PUFA levels at 7 and 12 % dietary lipid levels. The highest weight gain and specific growth rate were observed in crabs fed the diets with 19·8 and 13·2 mg/g n-3 LC-PUFA at 7 and 12 % lipid, respectively. Moisture and lipid contents in hepatopancreas and muscle were significantly influenced by dietary n-3 LC-PUFA at the two lipid levels. The DHA, EPA, n-3 LC-PUFA contents and n-3:n-6 PUFA ratio in hepatopancreas and muscle significantly increased as dietary n-3 LC-PUFA levels increased at both lipid levels. The expression levels of -6 fatty acyl desaturase and acyl-CoA oxidase in hepatopancreas increased significantly, and expression levels of fatty acid synthase, carnitine palmitoyltransferase I and hormone-sensitive TAG lipase were down-regulated, with increased dietary n-3 LC-PUFA regardless of lipid level. Based on weight gain, n-3 LC-PUFA requirements of S. paramamosain were estimated to be 20·1 and 12·7 mg/g of diet at 7 and 12 % dietary lipid, respectively. Overall, dietary lipid level influenced lipid metabolism, and purified, high-lipid diets rich in palmitic acid reduced the n-3 LC-PUFA requirement of juvenile mud crab.


Assuntos
Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Metabolismo dos Lipídeos , Ração Animal , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Regulação para Baixo , Ácidos Graxos Dessaturases/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Hepatopâncreas/metabolismo , Músculos/metabolismo , Esterol Esterase/metabolismo , Aumento de Peso
17.
Eur J Nutr ; 60(4): 2063-2075, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33015732

RESUMO

PURPOSE: Farmed fish are increasingly raised on feeds containing vegetable oils, which affects their composition and possibly health properties. We investigated the effects of consuming farmed salmon, raised on different feeding regimes, on nutrient status and health outcomes in healthy subjects. METHODS: Salmon were grown on feeds containing mainly fish oil (FO) or rapeseed oil (RO), resulting in an eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) content of fillets of 2.1 or 0.9 g/100 g, respectively. In a randomized parallel controlled trial, 51 healthy subjects were allocated to consume 2 portions/week of FO salmon (n = 17), RO salmon (n = 17) or no additional salmon (Control, n = 17) as part of their habitual diet, for 18 weeks. We collected blood at 0, 9 and 18 weeks to measure omega-3 index (O3I) in red blood cells, plasma markers of cardiovascular risk, serum 25(OH)-vitamin D3 (25(OH)D3) and plasma trace elements. RESULTS: After 18 weeks, O3I was similarly increased in subjects consuming 2 portions/week of FO or RO salmon compared to control (both p < 0.05). Serum 25(OH)D3 was significantly higher, whereas plasma triacylglycerols were significantly lower in subjects consuming RO salmon compared to control (both p < 0.05). Heart rate was significantly lower in subjects consuming FO salmon after 9 weeks, compared to control (p < 0.01). Salmon consumption did not affect other markers. CONCLUSION: Consuming two portions/week of salmon raised on rapeseed oil rather than fish oil increased the O3I and vitamin D status, and decreased plasma triacylglycerols. These outcomes endorse opportunities for developing more sustainable feeds within aquaculture food systems. CLINICAL TRIAL REGISTRY: This trial was registered at clinicaltrials.gov as NCT01916434.


Assuntos
Brassica napus , Salmão , Animais , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Óleos de Peixe , Humanos , Óleo de Brassica napus , Alimentos Marinhos
18.
ACS Omega ; 5(35): 22289-22298, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923786

RESUMO

Lipidomics methodologies traditionally utilize either reverse phase- or hydrophilic interaction liquid chromatography-type separations; however, supercritical fluid chromatography can offer a rapid normal phase type separation while reducing the dependence on organic solvents. However, normal phase type lipid separations typically lack pronounced intraclass separation, which is problematic for complex lipidomes containing very-long-chain polyunsaturated fatty acids, especially those from genetically modified organisms. A high-strength silica C18 method was developed, which benefitted from discrete class separation, as well as displaying intraclass selectivity sufficient for profiling flesh of salmon fed with a diet supplemented with oil from the genetically engineered oilseed Camelina sativa, a terrestrial oilseed with a fish oil-type profile. Salmon fed a diet containing this Camelina oil were found to have flesh enriched in triacylglycerols and phospholipids containing 18:3, 20:5, and 22:6, whereas salmon fed the control diet were differentiated by shorter chain plant-type fatty acids integrated within complex lipids. Coupled with active scanning quadrupole technology, data acquisition was enhanced, allowing for fragmentation data to be acquired in a data independent fashion, permitting acyl chain identification of resolved isomers. Therefore, we have developed a method, which is amenable for lipidomics studies of complex lipidomes, specifically those altered by synthetic biology approaches.

19.
Br J Nutr ; 124(8): 773-784, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32410717

RESUMO

The present study evaluated the effects of dietary Zn level on growth performance, serum and hepatopancreas metabolites, expression of genes involved in lipid and energy metabolism, and the signalling pathway of dietary Zn-induced lipolysis. Five isonitrogenous and isolipidic diets were formulated to contain different Zn levels: 46·4 (basal diet), 77·2, 87·0, 117·1 and 136·8 mg/kg, respectively. The results indicated that shrimp fed the diet containing Zn at 117·1 mg/kg had higher weight gain and specific growth rate, and the lowest feed intake and feed conversion rate, than shrimp fed the other diets. The deposition rate of Zn in whole body significantly decreased with increasing dietary Zn level. Dietary Zn prevented the accumulation of free radicals and improved antioxidant activities by increasing Cu/Zn superoxide dismutase and reducing malondialdehyde in hepatopancreas. Dietary Zn supplementation enhanced lipase activity and adiponectin, which could promote TAG breakdown and fatty acid oxidation and lead to reduced lipid in hepatopancreas. The mRNA expressions of ob-rb, adipor, camkkß, ampk, cd36, mcd and cpt1 involved in Zn-induced lipid catabolism were up-regulated, and the expressions of srebp, acc, fas and scd1 were down-regulated. The mRNA levels of SLC39 family genes (zip3, zip9, zip11 and zip14) in hepatopancreas were up-regulated with increasing dietary Zn level. The results demonstrated that dietary Zn level could significantly affect growth performance, tissue deposition of Zn, lipid metabolites and expression of genes involved in lipogenesis and lipolysis in Litopenaeus vannamei.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Lipólise/efeitos dos fármacos , Penaeidae/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Zinco/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Dieta/métodos , Hepatopâncreas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Oxirredução/efeitos dos fármacos , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo
20.
J Hazard Mater ; 395: 122600, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32272279

RESUMO

Copper is a widespread pollutant in marine environments, and marine animals can ingest large amounts of copper through the food chain. Here, an 8-week feeding trial was designed to investigate the effects of different dietary copper levels on coloration, copper bioaccumulation, stress response and oxidation resistance of juvenile mud crab Scylla paramamosain. The results indicated that crabs fed the diet with 162 mg/kg copper exhibited a dark-blue carapace and hemolymph. The accumulation of copper in tissues was positively correlated with the level of copper in feed. High/excess dietary copper (162 mg/kg) up-regulated the expression of stress response related genes, and reduced the expression/activities of anti-oxidation genes/enzymes. The activity of phenoloxidase decreased significantly when dietary copper level was 86-162 mg/kg, and the expression of hemocyanin was up-regulated in crab fed the diets with 28-162 mg/kg copper. Overall, the results of the present study indicated that high dietary copper led to parachrea in carapace and hemolymph of mud crab, and caused copper deposition abnormality in carapace and hepatopancreas. The data suggested that the toxic effects of dietary copper were concentration-dependent such that, excess dietary copper (162 mg/kg) had adverse impacts on oxidation resistance.


Assuntos
Braquiúros , Animais , Bioacumulação , Braquiúros/fisiologia , Cobre/toxicidade , Dieta , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...