Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Water Health ; 22(2): 372-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421631

RESUMO

The study objective was to evaluate human faecal contamination impacts in the Yal-ku lagoon in the Mexican Caribbean and to estimate adenovirus infection and illness risks associated with recreational exposure during water activities. A total of 20 water samples (10 from each site × two sites) (50 L) were collected monthly over a period of 12 months from two selected sampling sites in the swimming area of the Yal-ku lagoon. The occurrence of faecal-associated viruses was explored, and human adenovirus (HAdV) and pepper mild mottle virus (PMMoV) concentrations were quantified. A quantitative microbial risk assessment (QMRA) model was used to estimate exposure and subsequent adenovirus infection and illness risk for 1 h of swimming or snorkelling. Somatic and F + -specific coliphages occurred in 100% of the samples. Both HAdV and PMMoV were detected at a 60% frequency thereby indicating persistent faecal inputs. PMMoV concentrations (44-370 GC/L) were relatively lower than the concentrations of HAdV (64-1,000 GC/L). Estimated mean adenovirus risks were greater for snorkelling than for swimming by roughly one to two orders of magnitude and estimated mean illness risks for snorkelling were >32/1,000. Human faecal contamination is frequent in the Yal-ku lagoon, which is associated with human gastrointestinal illness.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Tobamovirus , Humanos , Região do Caribe , Água , Sorbitol
2.
Parasitol Res ; 122(11): 2641-2650, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676306

RESUMO

Cyclospora cayetanensis is an enteric coccidian parasite responsible for gastrointestinal disease transmitted through contaminated food and water. It has been documented in several countries, mostly with low-socioeconomic levels, although major outbreaks have hit developed countries. Detection methods based on oocyst morphology, staining, and molecular testing have been developed. However, the current MLST panel offers an opportunity for enhancement, as amplification of all molecular markers remains unfeasible in the majority of samples. This study aims to address this challenge by evaluating two approaches for analyzing the genetic diversity of C. cayetanensis and identifying reliable markers for subtyping: core homologous genes and mitochondrial genome analysis. A pangenome was constructed using 36 complete genomes of C. cayetanensis, and a haplotype network and phylogenetic analysis were conducted using 33 mitochondrial genomes. Through the analysis of the pangenome, 47 potential markers were identified, emphasizing the need for more sequence data to achieve comprehensive characterization. Additionally, the analysis of mitochondrial genomes revealed 19 single-nucleotide variations that can serve as characteristic markers for subtyping this parasite. These findings not only contribute to the selection of molecular markers for C. cayetanensis subtyping, but they also drive the knowledge toward the potential development of a comprehensive genotyping method for this parasite.


Assuntos
Cyclospora , Parasitos , Animais , Cyclospora/genética , Filogenia , Tipagem de Sequências Multilocus , Parasitos/genética , Técnicas de Genotipagem , Biomarcadores
3.
World J Microbiol Biotechnol ; 39(4): 94, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36754876

RESUMO

Natural pristine environments including cold habitats are thought to be the potent reservoirs of antibiotic-resistant genes and have been recurrently reported in polar glaciers' native bacteria, nevertheless, their abundance among the non-polar glaciers' inhabitant bacteria is mostly uncharted. Herein we evaluated antibiotic resistance profile, abundance of antibiotic-resistant genes plus class 1, 2, and 3 integron integrases in 65 culturable bacterial isolates retrieved from a non-polar glacier. The 16S rRNA gene sequencing analysis identified predominantly Gram-negative 43 (66.15%) and Gram-positive 22 (33.84%) isolates. Among the Gram-negative bacteria, Gammaproteobacteria were dominant (62.79%), followed by Betaproteobacteria (18.60%) and Alphaproteobacteria (9.30%), whereas Phyla Actinobacteria (50%) and Firmicutes (40.90%) were predominant among Gram-positive. The Kirby Bauer disc diffusion method evaluated significant antibiotic resistance among the isolates. PCR amplification revealed phylum Proteobacteria predominantly carrying 21 disparate antibiotic-resistant genes like; blaAmpC 6 (100%), blaVIM-1, blaSHV and blaDHA 5 (100%) each, blaOXA-1 1 (100%), blaCMY-4 4 (100%), followed by Actinobacteria 14, Firmicutes 13 and Bacteroidetes 11. Tested isolates were negative for blaKPC, qnrA, vanA, ermA, ermB, intl2, and intl3. Predominant Gram-negative isolates had higher MAR index values, compared to Gram-positive. Alignment of protein homology sequences of antibiotic-resistant genes with references revealed amino acid variations in blaNDM-1, blaOXA-1, blaSHV, mecA, aac(6)-Ib3, tetA, tetB, sul2, qnrB, gyrA, and intI1. Promising antibiotic-resistant bacteria, harbored with numerous antibiotic-resistant genes and class 1 integron integrase with some amino acid variations detected, accentuating the mandatory focus to evaluate the intricate transcriptome analysis of glaciated bacteria conferring antibiotic resistance.


Assuntos
Antibacterianos , Camada de Gelo , Antibacterianos/farmacologia , Paquistão , Prevalência , RNA Ribossômico 16S/genética , Bactérias , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
4.
Sci Total Environ ; 857(Pt 1): 159165, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36195153

RESUMO

Previous studies show that SARS-CoV-2 waste shedding rates vary by community and are influenced by multiple factors; however, differences in shedding rates across multiple variants have yet to be evaluated. The purpose of this work is to build on previous research that evaluated waste shedding rates for early SARS-CoV-2 and the Delta variant, and update population level waste shedding rates for the more-recent Omicron variant in six communities. Mean SARS-CoV-2 waste shedding rates were found to increase with the predominance of the Delta variant and subsequently decrease with Omicron infections. Interestingly, the Delta stage had the highest mean shedding rates and was associated with the most severe disease symptoms reported in other clinical studies, while Omicron, exhibiting reduced symptoms, had the lowest mean shedding rates. Additionally, shedding rates were most consistent across communities during the Omicron stage. This is the first paper to identify waste shedding rates specific to the Omicron variant and fills a knowledge gap critical to disease prevalence modeling.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Águas Residuárias , COVID-19/epidemiologia
5.
Microbiol Spectr ; 10(6): e0172022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314905

RESUMO

Currently, there is no data on the molecular quantification of microbial indicators of recycled water quality in India. In this study, multiple microbial pathogens and indicators of water quality were evaluated at three wastewater treatment plants located in two Indian cities (New Delhi and Jaipur) to determine the treatment performance and suitability of recycled water for safe and sustainable reuse applications. Real-time polymerase chain reaction (PCR) was used for the rapid evaluation of six human pathogens and six microbial indicators of fecal contamination. Among the microbial indicators, pepper mild mottle virus (PMMoV), F+RNA-GII bacteriophage, Bacteroides thetaiotamicron, and four human pathogens (Norovirus genogroups I & II, Giardia, and Campylobacter coli) were detected in all of the influent samples analyzed. This work suggests that the raw influents contain lower levels of noroviruses and adenoviruses and higher levels of Giardia compared to those reported from other geographic regions. Overall, the efficacy of the removal of microbial targets was over 93% in the final effluent samples, which is consistent with reports from across the world. PMMoV and Giardia were identified as the best microbial targets, from the microbial indicators spanning across bacteria, bacteriophages, DNA/RNA viruses, and protozoan parasites, by which to evaluate treatment performance and recycled water quality in Indian settings, as they were consistently present at high concentrations in untreated wastewater both within and across the sites. Also, they showed a strong correlation with other microbial agents in both the raw influent and in the final effluent. These findings provide valuable insights into the use of culture-independent molecular indicators that can be used to assess the microbial quality of recycled water in Indian settings. IMPORTANCE Wastewater treatment plants (WWTPs) have rapidly increased in India during the last decade. Nonetheless, there are only a few labs in India that can perform culture-based screening for microbial quality. In the last 2 years of the pandemic, India has witnessed a sharp increase in molecular biology labs. Therefore, it is evident that culture-independent real-time PCR will be increasingly used for the assessment of microbial indicators/pathogens in wastewater, especially in resource-limited settings. There is no data available on the molecular quantitation of microbial indicators from India. There is an urgent need to understand and evaluate the performance of widely used microbial indicators via molecular quantitation in Indian WWTPs. Our findings lay the groundwork for the molecular quantitation of microbial indicators in WWTPs in India. We have screened for 12 microbial targets (indicators and human pathogens) and have identified pepper mild mottle virus (PMMoV) and Giardia as the best molecular microbiological indicators in Indian settings.


Assuntos
Norovirus , Vírus de RNA , Tobamovirus , Purificação da Água , Humanos , Águas Residuárias , Tobamovirus/genética , Vírus de DNA , Microbiologia da Água
6.
Sci Total Environ ; 838(Pt 4): 156535, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688254

RESUMO

Wastewater-based epidemiology (WBE) has been utilized as an early warning tool to anticipate disease outbreaks, especially during the COVID-19 pandemic. However, COVID-19 disease models built from wastewater-collected data have been limited by the complexities involved in estimating SARS-CoV-2 fecal shedding rates. In this study, wastewater from six municipalities in Arizona and Florida with distinct demographics were monitored for SARS-CoV-2 RNA between September 2020 and December 2021. Virus concentrations with corresponding clinical case counts were utilized to estimate community-wide fecal shedding rates that encompassed all infected individuals. Analyses suggest that average SARS-CoV-2 RNA fecal shedding rates typically occurred within a consistent range (7.53-9.29 log10 gc/g-feces); and yet, were unique to each community and influenced by population demographics. Age, ethnicity, and socio-economic factors may have influenced shedding rates. Interestingly, populations with median age between 30 and 39 had the greatest fecal shedding rates. Additionally, rates remained relatively constant throughout the pandemic provided conditions related to vaccination and variants were unchanged. Rates significantly increased in some communities when the Delta variant became predominant. Findings in this study suggest that community-specific shedding rates may be appropriate in model development relating wastewater virus concentrations to clinical case counts.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/epidemiologia , Fezes , Humanos , Pandemias , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
7.
Sci Total Environ ; 835: 155410, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35469875

RESUMO

A decline in diagnostic testing for SARS-CoV-2 is expected to delay the tracking of COVID-19 variants of concern and interest in the United States. We hypothesize that wastewater surveillance programs provide an effective alternative for detecting emerging variants and assessing COVID-19 incidence, particularly when clinical surveillance is limited. Here, we analyzed SARS-CoV-2 RNA in wastewater from eight locations across Southern Nevada between March 2020 and April 2021. Trends in SARS-CoV-2 RNA concentrations (ranging from 4.3 log10 gc/L to 8.7 log10 gc/L) matched trends in confirmed COVID-19 incidence, but wastewater surveillance also highlighted several limitations with the clinical data. Amplicon-based whole genome sequencing (WGS) of 86 wastewater samples identified the B.1.1.7 (Alpha) and B.1.429 (Epsilon) lineages in December 2020, but clinical sequencing failed to identify the variants until January 2021, thereby demonstrating that 'pooled' wastewater samples can sometimes expedite variant detection. Also, by calibrating fecal shedding (11.4 log10 gc/infection) and wastewater surveillance data to reported seroprevalence, we estimate that ~38% of individuals in Southern Nevada had been infected by SARS-CoV-2 as of April 2021, which is significantly higher than the 10% of individuals confirmed through clinical testing. Sewershed-specific ascertainment ratios (i.e., X-fold infection undercounts) ranged from 1.0 to 7.7, potentially due to demographic differences. Our data underscore the growing application of wastewater surveillance in not only the identification and quantification of infectious agents, but also the detection of variants of concern that may be missed when diagnostic testing is limited or unavailable.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral , SARS-CoV-2/genética , Estudos Soroepidemiológicos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
8.
Sci Total Environ ; 805: 149930, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536875

RESUMO

In the Fall of 2020, university campuses in the United States resumed on-campus instruction and implemented wastewater monitoring for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While quantitative polymerase chain reaction (qPCR) tests were deployed successfully to detect viral RNA in wastewater across campuses, the feasibility of detecting viral variants from a residential building like a dormitory was unclear. Here, we demonstrate that wastewater surveillance from a dormitory with at least three infected students could lead to the identification of viral genomes with more than 95% coverage. Our results indicate that viral variant detection from wastewater is achievable at a dormitory and that coronavirus disease 2019 (COVID-19) wastewater surveillance programs will benefit from the implementation of viral whole genome sequencing at universities.


Assuntos
COVID-19 , Águas Residuárias , Genômica , Humanos , SARS-CoV-2 , Universidades , Vigilância Epidemiológica Baseada em Águas Residuárias
9.
Sci Total Environ ; 801: 149794, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467933

RESUMO

Wastewater-based epidemiology (WBE) was utilized to monitor SARS-CoV-2 RNA in sewage collected from manholes specific to individual student dormitories (dorms) at the University of Arizona in the fall semester of 2020, which led to successful identification and reduction of SARS-CoV-2 transmission events. Positive wastewater samples triggered clinical testing of residents within that dorm; thus, SARS-CoV-2 infected individuals were identified regardless of symptom expression. This current study examined clinical testing data to determine the abundance of asymptomatic versus symptomatic cases in these defined communities. Nasal and nasopharyngeal swab samples processed via antigen and PCR tests indicated that 79.2% of SARS-CoV-2 infections were asymptomatic, and only 20.8% of positive cases reported COVID-19 symptoms at the time of testing. Clinical data was paired with corresponding wastewater virus concentrations, which enabled calculation of viral shedding rates in feces per infected person. Mean shedding rates averaged from positive wastewater samples across all dorms were 7.30 ± 0.67 log10 genome copies per gram of feces (gc/g-feces) based on the N1 gene. Quantification of SARS-CoV-2 fecal shedding rates from infected individuals has been the critical missing component necessary for WBE models to measure and predict SARS-CoV-2 infection prevalence in communities. The findings from this study can be utilized to create models that can be used to inform public health prevention and response actions.


Assuntos
COVID-19 , SARS-CoV-2 , Fezes , Humanos , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
10.
Food Environ Virol ; 13(4): 457-469, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34415553

RESUMO

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater has been reported as a result of fecal shedding of infected individuals. In this study, the occurrence of SARS-CoV-2 RNA was explored in primary-treated wastewater from two municipal wastewater treatment plants in Quintana Roo, Mexico, along with groundwater from sinkholes, a household well, and submarine groundwater discharges. Physicochemical variables were obtained in situ, and coliphage densities were determined. Three virus concentration methods based on adsorption-elution and sequential filtration were used followed by RNA isolation. Quantification of SARS-CoV-2 was done by RT-qPCR using the CDC 2020 assay, 2019-nCoV_N1 and 2019-nCoV_N2. The Pepper mild mottle virus, one of the most abundant RNA viruses in wastewater was quantified by RT-qPCR and compared to SARS-CoV-2 concentrations. The use of three combined virus concentration methods together with two qPCR assays allowed the detection of SARS-CoV-2 RNA in 58% of the wastewater samples analyzed, whereas none of the groundwater samples were positive for SARS-CoV-2 RNA. Concentrations of SARS-CoV-2 in wastewater were from 1.8 × 103 to 7.5 × 103 genome copies per liter (GC l-1), using the N1 RT-qPCR assay, and from 2.4 × 102 to 5.9 × 103 GC l-1 using the N2 RT-qPCR assay. Based on PMMoV prevalence detected in all wastewater and groundwater samples tested, the three viral concentration methods used could be successfully applied for SARS-CoV-2 RNA detection in further studies. This study represents the first detection of SARS-CoV-2 RNA in wastewater in southeast Mexico and provides a baseline for developing a wastewater-based epidemiology approach in the area.


Assuntos
COVID-19 , Água Subterrânea , Monitoramento Ambiental , Humanos , México , RNA Viral/genética , SARS-CoV-2 , Águas Residuárias
11.
Sci Total Environ ; 779: 146408, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743467

RESUMO

Wastewater-based epidemiology has potential as an early-warning tool for determining the presence of COVID-19 in a community. The University of Arizona (UArizona) utilized WBE paired with clinical testing as a surveillance tool to monitor the UArizona community for SARS-CoV-2 in near real-time, as students re-entered campus in the fall. Positive detection of virus RNA in wastewater lead to selected clinical testing, identification, and isolation of three infected individuals (one symptomatic and two asymptomatic) that averted potential disease transmission. This case study demonstrated the value of WBE as a tool to efficiently utilize resources for COVID-19 prevention and response. Thus, WBE coupled with targeted clinical testing was further conducted on 13 dorms during the course of the Fall semester (Table 3). In total, 91 wastewater samples resulted in positive detection of SARS-CoV-2 RNA that successfully provided an early-warning for at least a single new reported case of infection (positive clinical test) among the residents living in the dorm. Overall, WBE proved to be an accurate diagnostic for new cases of COVID-19 with an 82.0% positive predictive value and an 88.9% negative predictive value. Increases in positive wastewater samples and clinical tests were noted following holiday-related activities. However, shelter-in-place policies proved to be effective in reducing the number of daily reported positive wastewater and clinical tests. This case study provides evidence for WBE paired with clinical testing and public health interventions to effectively contain potential outbreaks of COVID-19 in defined communities.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , RNA Viral , SARS-CoV-2 , Águas Residuárias
12.
Nat Protoc ; 16(3): 1452-1475, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33514945

RESUMO

Norovirus is a widespread public health threat and has a very low infectious dose. This protocol presents the extremely sensitive mobile detection of norovirus from water samples using a custom-built smartphone-based fluorescence microscope and a paper microfluidic chip. Antibody-conjugated fluorescent particles are immunoagglutinated and spread over the paper microfluidic chip by capillary action for individual counting using a smartphone-based fluorescence microscope. Smartphone images are analyzed using intensity- and size-based thresholding for the elimination of background noise and autofluorescence as well as for the isolation of immunoagglutinated particles. The resulting pixel counts of particles are correlated with the norovirus concentration of the tested sample. This protocol provides detailed guidelines for the construction and optimization of the smartphone- and paper-based assay. In addition, a 3D-printed enclosure is presented to incorporate all components in a dark environment. On-chip concentration and the assay of higher concentrations are presented to further broaden the assay range. This method is the first to be presented as a highly sensitive mobile platform for norovirus detection using low-cost materials. With all materials and reagents prepared, a single standard assay takes under 20 min. Although the method described is used for detection of norovirus, the same protocol could be adapted for detection of other pathogens by using different antibodies.


Assuntos
Microfluídica/instrumentação , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Fluorescência , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Norovirus/isolamento & purificação , Norovirus/patogenicidade , Smartphone , Água/análise , Microbiologia da Água
13.
Water Res ; 177: 115812, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32311575

RESUMO

Increased water demands have led to a notable interest in the use of treated wastewater for reuse. Typically, this results from the implementation of advanced treatment of final effluent from wastewater treatment plants prior to reuse for potable or non-potable purposes. Soil aquifer treatment (SAT) is a natural treatment process in which water from sources of varying quality is infiltrated into the soil to further improve its quality. The goal of this study was to determine the log10 reduction values (LRVs) of viruses naturally present in treated effluent and evaluate two potential indicators of virus removal and transport, pepper mild mottle virus (PMMoV) and crAssphage, during SAT of treated effluent. Groundwater was sampled at three wells with different attributes within the Sweetwater Recharge Facility (SWRF) in Tucson, AZ. These sites vary greatly in operational parameters such as effluent infiltration rates and wetting/drying cycles, which may influence virus removal efficiency. Detection of adenovirus, enterovirus, PMMoV, and crAssphage were determined by qPCR/RT-qPCR and log10 reduction values (LRVs) were determined. PMMoV and crAssphage were detected in groundwater associated with a set of recharge basins that exhibited shorter wetting/drying cycles and faster infiltration rates. LRVs for crAssphage and PMMoV at this site ranged from 3.9 to 5.8, respectively. Moreover, PMMoV was detected downflow of the SAT sites, indicating the potential degradation of microbial groundwater quality in the region surrounding managed aquifer recharge facilities. Overall, PMMoV and crAssphage showed potential as conservative process indicators of virus removal during SAT, particularly for attribution of LRV credits. Moreover, the detection of these viruses indicated the potential influence of wetting/drying cycles on virus removal by SAT, a parameter that has not yet been studied with respect to biological contaminants.


Assuntos
Enterovirus , Água Subterrânea , Vírus , Solo , Águas Residuárias
14.
ACS Omega ; 4(6): 11180-11188, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460218

RESUMO

Human enteric viruses can be highly infectious and thus capable of causing disease upon ingestion of low doses ranging from 100 to 102 virions. Norovirus is a good example with a minimum infectious dose as low as a few tens of virions, that is, below femtogram scale. Norovirus detection from commonly implicated environmental matrices (water and food) involves complicated concentration of viruses and/or amplification of the norovirus genome, thus rendering detection approaches not feasible for field applications. In this work, norovirus detection was performed on a microfluidic paper analytic device without using any sample concentration or nucleic acid amplification steps by directly imaging and counting on-paper aggregation of antibody-conjugated, fluorescent submicron particles. An in-house developed smartphone-based fluorescence microscope and an image-processing algorithm isolated the particles aggregated by antibody-antigen binding, leading to an extremely low limit of norovirus detection, as low as 1 genome copy/µL in deionized water and 10 genome copies/µL in reclaimed wastewater.

15.
Pathogens ; 8(3)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336640

RESUMO

Detection of waterborne enteric viruses is an essential tool in assessing the risk of waterborne transmission. Cell culture is considered a gold standard for detection of these viruses. However, it is important to recognize the uncertainty and limitations of enteric virus detection in cell culture. Cell culture cannot support replication of all virus types and strains, and numerous factors control the efficacy of specific virus detection assays, including chemical additives, cell culture passage number, and sequential passage of a sample in cell culture. These factors can result in a 2- to 100-fold underestimation of virus infectivity. Molecular methods reduce the time for detection of viruses and are useful for detection of those that do not produce cytopathogenic effects. The usefulness of polymerase chain reaction (PCR) to access virus infectivity has been demonstrated for only a limited number of enteric viruses and is limited by an understanding of the mechanism of virus inactivation. All of these issues are important to consider when assessing waterborne infectious viruses and expected goals on virus reductions needed for recycled water. The use of safety factors to account for this may be useful to ensure that the risks in drinking water and recycled water for potable reuse are minimized.

16.
Microbiol Resour Announc ; 8(18)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048382

RESUMO

Here, we present the complete genome sequences of three circular replication-associated protein (Rep)-encoding single-stranded DNA (CRESS DNA) viruses detected in secondary treated and disinfected wastewater effluent. The discovered viruses, named wastewater CRESS DNA virus (WCDV)-1 to -3, represent novel viral species that seem to persist in wastewater effluent.

17.
Environ Res ; 174: 1-8, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015109

RESUMO

Agricultural water withdrawals account for the largest proportion of global freshwater use. Increasing municipal water demands and droughts are straining agricultural water supplies. Therefore, alternative solutions to agricultural water crises are urgently needed, including the use of nontraditional water sources such as advanced treated wastewater or reclaimed water, brackish water, return flows, and effluent from produce processing facilities. However, it is critical to ensure that such usage does not compromise soil, crop, and public health. Here, we characterized five different nontraditional water types (n = 357 samples) for the presence of pharmaceuticals, herbicides, and disinfectants using ultra-high-pressure liquid chromatography tandem mass spectrometry based method (UPLC-MS/MS). We then evaluated whether the levels of these contaminants were influenced by season. The highest level of herbicides (atrazine) was detected in untreated pond water (median concentration 135.9 ng/L). Reclaimed water had the highest levels of antibiotics and stimulants including azithromycin (215 ng/L), sulfamethoxazole (232.1 ng/L), and caffeine (89.4 ng/L). Produce processing plant water also tended to have high levels of atrazine (102.7 ng/L) and ciprofloxacin (80.1 ng/L). In addition, we observed seasonal variability across water types, with the highest atrazine concentrations observed during summer months, while the highest median azithromycin concentrations were observed in reclaimed water during the winter season. Further studies are needed to evaluate if economically feasible on-farm water treatment technologies can effectively remove such contaminants from nontraditional irrigation water sources.


Assuntos
Desinfetantes/análise , Herbicidas/análise , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem , Águas Residuárias , Água
18.
J Contam Hydrol ; 223: 103479, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30992142

RESUMO

Reduction of viral surrogates (bacteriophage MS2 and murine norovirus-1 [MNV-1]) and viruses naturally present in wastewater (enteroviruses, adenoviruses, Aichi viruses, reovirus, pepper mild mottle virus) was studied in a long-term experiment simulating soil-aquifer treatment of a non-disinfected secondary treated wastewater effluent blend using a 4.4 m deep saturated soil column (95% sand, 4% silt, 1% clay) with a hydraulic residence time of 15.4 days under predominantly anoxic redox conditions. Water samples were collected over a four-week period from the column inflow and outflow as well as from seven intermediate sampling ports at different depths. Removal of MS2 was 3.5 log10 over 4.4 m and removal of MNV-1 was 3 log10 over 0.3 m. Notably, MNV-1 was removed to below detection limit within 0.3 m of soil passage. In secondary treated wastewater effluent, MNV-1 RNA and MS2 RNA degraded at a first-order rate of 0.59 day-1 and 0.12 day-1, respectively. In 15.4 days, the time to pass the soil column, the RNA-degradation of MS2 would amount to 0.8 log10, and in one day that of MNV-1 0.3 log10 implying that attachment of MNV-1 and MS2 to the sandy soil took place. Among the indigenous viruses, genome copies reductions were observed for Aichi virus (4.9 log10) and for pepper mild mottle virus (4.4 log10). This study demonstrated that under saturated flow and predominantly anoxic redox conditions MS2 removal was non-linear and could be described well by a power-law relation. Pepper mild mottle virus was removed less than all of the other viruses studied, which substantiates field studies at managed aquifer recharge sites, suggesting it may be a conservative model/tracer for enteric virus transport through soil.


Assuntos
Água Subterrânea , Norovirus , Vírus , Animais , Camundongos , Solo , Águas Residuárias
19.
Environ Res ; 170: 122-127, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30579985

RESUMO

The quality of irrigation water used to cultivate produce that is consumed raw is an important issue with regard to food safety. In this study, the microbiological quality of potential irrigation water sources in Arizona was evaluated by testing for the presence of indicator and pathogenic bacteria. Reclaimed water samples were collected from two wastewater treatment plants and return flow samples were collected from two drainage canals and one return flow pond. Standard membrane filtration methods were used for detection of indicator bacteria. Water samples (n = 28) were filtered through cellulose ester membrane filters and bacterial populations were enumerated by placing the filters on selective agar. For detection of pathogens (Salmonella enterica, Listeria monocytogenes and Shiga toxin-producing E. coli (STEC)), water samples were filtered through Modified Moore swabs and enriched in Universal Pre-enrichment Broth, followed by selective enrichment broth for each pathogen. The enriched broth was streaked onto agar media selective for each pathogen. Presumptive colonies were confirmed by PCR/real-time PCR. Among the 14 reclaimed water samples from two sites, the ranges of recovered populations of E. coli, total coliforms, and enterococci were 0-1.3, 0.5-8.3 × 103, and 0-5.5 CFU/100 mL, respectively. No L. monocytogenes, Salmonella or STEC were found. In the 13 return flow water samples from 3 sites, the ranges of recovered populations of E. coli, total coliforms and enterococci were 1.9-5.3 × 102, 6.5 × 102-9.1 × 104, and 2.9-3.7× 103 CFU/100 mL, respectively. All samples were negative for L. monocytogenes. One (7.1%) of the return flow samples was positive for E. coli O145. Nine (64.3%) of the samples were positive for Salmonella. Both real-time PCR and culture-based methods were used for the detection of Salmonella and L. monocytogenes, and the results from the two methods were comparable. The findings of this study provide evidence that irrigation waters in Arizona, including reclaimed water and return flows, could be potential sources of bacterial contamination of produce. Additional work is needed to evaluate whether bacteria present in irrigation water sources transfer to the edible portion of irrigated plants and are capable of persisting through post-harvest activities.


Assuntos
Monitoramento Ambiental , Escherichia coli , Microbiologia da Água , Poluição da Água/análise , Arizona , Fezes , Incidência
20.
Food Environ Virol ; 10(3): 297-304, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29679283

RESUMO

This study was designed to determine the quantitative polymerase chain reaction (qPCR) signal persistence of viruses in three effluent-dominated streams. Samples were collected from the effluent outfall of three wastewater treatment plants in the Western United States and downstream at different locations. All samples were tested for the presence of pepper mild mottle virus (PMMoV), adenoviruses, norovirus GI and GII, Aichi virus, and enteroviruses using qPCR. PMMoV was detected most frequently in 54/57 (94.7%) samples, followed by adenoviruses which was detected in 21/57 (36.8%) samples. PMMoV was detected at all locations downstream and up to 32 km from the discharge point. This study demonstrated that the detection signal of PMMoV was able to persist in wastewater discharges to a greater degree than human enteric viruses in effluent-dominated rivers.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Enterovirus/crescimento & desenvolvimento , Kobuvirus/crescimento & desenvolvimento , Norovirus/crescimento & desenvolvimento , Rios/virologia , Esgotos/virologia , Tobamovirus/crescimento & desenvolvimento , Adenoviridae/genética , Enterovirus/genética , Monitoramento Ambiental , Humanos , Kobuvirus/genética , Norovirus/genética , Reação em Cadeia da Polimerase/métodos , Tobamovirus/genética , Estados Unidos , Águas Residuárias/virologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...