Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(17): 3674-3683, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38749821

RESUMO

The Zika virus (ZIKV) is considered a public health problem worldwide due to its association with the development of microcephaly and the Guillain-Barré syndrome. Currently, there is no specific treatment or vaccine approved to combat this disease, and thus, developing safe and effective vaccines is a relevant goal. In this study, a multi-epitope protein called rpZDIII was designed based on a series of ZIKV antigenic sequences, a bacterial carrier, and linkers. The analysis of the predicted 3D structure of the rpZDIII chimeric antigen was performed on the AlphaFold 2 server, and it was produced in E. coli and purified from inclusion bodies, followed by solubilization and refolding processes. The yield achieved for rpZDIII was 11 mg/L in terms of pure soluble recombinant protein per liter of fermentation. rpZDIII was deemed immunogenic since it induced serum IgG and IgM responses in mice upon subcutaneous immunization in a three-dose scheme. Moreover, sera from mice immunized with rpZDIII showed neutralizing activity against ZIKV. Therefore, this study reveals rpZDIII as a promising immunogen for the development of a rationally designed multi-epitope vaccine against ZIKV, and completion of its preclinical evaluation is guaranteed.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Virais , Infecção por Zika virus , Zika virus , Animais , Zika virus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/imunologia , Antígenos Virais/imunologia , Antígenos Virais/genética , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Epitopos/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , Escherichia coli/genética , Escherichia coli/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/sangue , Camundongos Endogâmicos BALB C
2.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543088

RESUMO

Subunit vaccines stand as a leading approach to expanding the current portfolio of vaccines to fight against COVID-19, seeking not only to lower costs but to achieve long-term immunity against variants of concern and have the main attributes that could overcome the limitations of the current vaccines. Herein a chimeric protein targeting S1 and S2 epitopes, called LTp50, was designed as a convenient approach to induce humoral responses against SARS-CoV-2. LTp50 was produced in recombinant Escherichia coli using a conventional pET vector, recovering the expected antigen in the insoluble fraction. LTp50 was purified by chromatography (purity > 90%). The solubilization and refolding stages helped to obtain a stable protein amenable for vaccine formulation. LTp50 was adsorbed onto alum, resulting in a stable formulation whose immunogenic properties were assessed in BALB/c mice. Significant humoral responses against the S protein (BA.5 variant) were detected in mice subjected to three subcutaneous doses (10 µg) of the LTp50/alum formulation. This study opens the path for the vaccine formulation optimization using additional adjuvants to advance in the development of a highly effective anti-COVID-19 vaccine directed against the antigenic regions of the S protein, which are less prone to mutations.

3.
Vaccines (Basel) ; 10(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146630

RESUMO

Clay materials and nanoclays have gained recent popularity in the vaccinology field, with biocompatibility, simple functionalization, low toxicity, and low-cost as their main attributes. As elements of nanovaccines, halloysite nanotubes (natural), layered double hydroxides and hectorite (synthetic) are the nanoclays that have advanced into the vaccinology field. Until now, only physisorption has been used to modify the surface of nanoclays with antigens, adjuvants, and/or ligands to create nanovaccines. Protocols to covalently attach these molecules have not been developed with nanoclays, only procedures to develop adsorbents based on nanoclays that could be extended to develop nanovaccine conjugates. In this review, we describe the approaches evaluated on different nanovaccine candidates reported in articles, the immunological results obtained with them and the most advanced approaches in the preclinical field, while describing the nanomaterial itself. In addition, complex systems that use nanoclays were included and described. The safety of nanoclays as carriers is an important key fact to determine their true potential as nanovaccine candidates in humans. Here, we present the evaluations reported in this field. Finally, we point out the perspectives in the development of vaccine prototypes using nanoclays as antigen carriers.

4.
Int J Biol Macromol ; 134: 379-389, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082425

RESUMO

This study reports biosynthesis of gold-nanoparticles (AuNPs) by using ß-d-glucans isolated from the yeast Yarrowia lypolitica D1. ß-d-glucans serve as reducing and stabilizing mediators that induce the formation of AuNPs on the outer surface of the own ß-d-glucan. The systems were physicochemically characterized by ultraviolet visible (UV-Vis) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and dynamic light scattering (DLS) analyses. The results revealed the generation of AuNPs with quasi-spherical shape or large one dimension (1D) gold-nanostructures (AuNSs) depending on the HAuCl4 concentration. A cytotoxic study was assessed in mouse splenocytes. Contrary to that expected, important cytotoxicity was found in all ß-d-gluc+AuNPs systems by an oxidative stress increase. This study discusses the cytotoxic mechanism, suggesting that the resulting ß-d-gluc+AuNPs systems may not be candidates for the formulation of immunostimulants or nanocarriers for biomedical applications.


Assuntos
Citotoxicidade Imunológica , Glucanos , Ouro , Nanopartículas Metálicas , Estresse Oxidativo , Baço/citologia , Baço/fisiologia , Animais , Antioxidantes , Biomarcadores , Catalase , Sobrevivência Celular/imunologia , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Glucanos/química , Ouro/química , Química Verde , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Óxido Nítrico/metabolismo , Fagocitose/imunologia , Explosão Respiratória
5.
J Org Chem ; 80(11): 5771-82, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25965325

RESUMO

Several new examples of meso-(het)arylBODIPY were prepared via the Liebeskind-Srogl (L-S) cross-coupling reaction of the Biellmann BODIPYs (1a,b) and aryl- and heteroarylboronic acids in good to excellent yield. It was shown that this reaction could be carried out under microwave heating to shorten reaction times and/or increase the yield. It was illustrated that organostannanes also participate in the L-S reaction to give the corresponding BODIPY analogues in short reaction times and also with good to excellent yields. We analyze the role of the substituent at the sensitive meso position in the photophysical signatures of these compounds. In particular, the rotational motion of the aryl ring and the electron donor ability of the anchored moieties rule the nonradiative pathways and, hence, have a deep impact in the fluorescence efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...