Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Vaccine X ; 16: 100420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192619

RESUMO

Described here is the evaluation of a luciferase (luc) and respiratory syncytial virus (RSV) messenger RNA / lipid nanoparticle (mRNA/LNP) vaccine using a Needle-free Injection System, Tropis®, from PharmaJet® (Golden, Colorado USA). Needle-free jet delivery offers an alternative to needle/syringe. To perform this assessment, compatibility studies with Tropis were first performed with a luc mRNA/LNP and compared to needle/syringe. Although minor changes in particle size and encapsulation efficiency were observed when using Tropis on the benchtop, in vitro luciferase activity remained the same. Next, the luc mRNA/LNP was administered to rats intramuscularly using Tropis or needle/syringe and tracking of the injection and distribution was performed. Lastly, an mRNA encoding a prefusion-stabilized F protein from RSV was delivered intramuscularly using both Tropis and needle/syringe at 1 and 5 mcg mRNA. An equivalent IgG response was observed using both Tropis and needle/syringe. The cell mediated immune (CMI) response was also evaluated, and responses to RSV-F were detected from animals immunized with needle/syringe at all dose levels, and from the animals immunized with Tropis in the 5 and 25 ug groups. These results indicated that delivery of mRNA/LNPs with Tropis is a potential means of administration and an alternative to needle/syringe.

2.
Vaccine ; 41(44): 6488-6501, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37777449

RESUMO

Human respiratory syncytial virus (RSV) causes a substantial proportion of respiratory tract infections worldwide. Although RSV reinfections occur throughout life, older adults, particularly those with underlying comorbidities, are at risk for severe complications from RSV. There is no RSV vaccine available to date, and treatment of RSV in adults is largely supportive. A correlate of protection for RSV has not yet been established, but antibodies targeting the pre-fusion conformation of the RSV F glycoprotein play an important role in RSV neutralization. We previously reported a Phase 1 study of an mRNA-based vaccine (V171) expressing a pre-fusion-stabilized RSV F protein (mDS-Cav1) in healthy adults. Here, we evaluated an mRNA-based vaccine (V172) expressing a further stabilized RSV pre-fusion F protein (mVRC1). mVRC1 is a single chain version of RSV F with interprotomer disulfides in addition to the stabilizing mutations present in the mDS-Cav1 antigen. The immunogenicity of the two mRNA-based vaccines encoding mVRC1 (V172) or a sequence-optimized version of mDS-Cav1 to improve transcriptional fidelity (V171.2) were compared in RSV-naïve and RSV-experienced African green monkeys (AGMs). V172 induced higher neutralizing antibody titers than V171.2 and demonstrated protection in the AGM challenge model. We conducted a Phase 1, randomized, placebo-controlled, clinical trial of 25 µg, 100 µg, 200 µg, or 300 µg of V172 in healthy older adults (60-79 years old; N = 112) and 100 µg, 200 µg, or 300 µg of V172 in healthy younger adults (18-49 years old; N = 48). The primary clinical objectives were to evaluate the safety and tolerability of V172, and the secondary objective was to evaluate RSV serum neutralization titers. The most commonly reported solicited adverse events were injection-site pain, injection-site swelling, headache, and tiredness. V172 was generally well tolerated in older and younger adults and increased serum neutralizing antibody titers, pre-fusion F-specific competing antibody titers, and RSV F-specific T-cell responses.

3.
Mol Pharm ; 20(1): 279-289, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36251490

RESUMO

mRNA vaccines have recently received significant attention due to their role in combating the SARS-CoV-2 pandemic. As a platform, mRNA vaccines have been shown to elicit strong humoral and cellular immune responses with acceptable safety profiles for prophylactic use. Despite their potential, industrial challenges have limited realization of the vaccine platform on a global scale. Critical among these challenges are supply chain considerations, including mRNA production, cost of goods, and vaccine frozen-chain distribution. Here, we assess the delivery of lipid nanoparticle-encapsulated mRNA (mRNA/LNP) vaccines using a split-dose immunization regimen as an approach to develop mRNA dose-sparing vaccine regimens with potential to mitigate mRNA supply chain challenges. Our data demonstrate that immunization by a mRNA/LNP vaccine encoding respiratory syncytial virus pre-F (RSV pre-F) over a 9 day period elicits comparable or superior magnitude of antibodies when compared to traditional bolus immunization of the vaccine. The split-dose immunization regimens evaluated in our studies were designed to mimic reported drug or antigen release profiles from microneedle patches, highlighting the potential benefit of pairing mRNA vaccines with patch-based delivery technologies to enable sustained release and solid-state stabilization. Overall, our findings provide a proof of concept to support further investigations into the development of sustained delivery approaches for mRNA/LNP vaccines.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Humanos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Antivirais , Vacinas contra Vírus Sincicial Respiratório/genética , SARS-CoV-2/genética , COVID-19/prevenção & controle , Imunidade , RNA Mensageiro/genética , Anticorpos Neutralizantes
4.
EBioMedicine ; 82: 104203, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35915046

RESUMO

BACKGROUND: To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine. METHODS: We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters. FINDINGS: VSV∆G-SARS-CoV-2 delivered with a single intramuscular (IM) injection was immunogenic in cotton rats and hamsters and protected hamsters from weight loss following SARS-CoV-2 challenge. When mucosal vaccination was evaluated, cotton rats did not respond to the vaccine, whereas mucosal administration of VSV∆G-SARS-CoV-2 was found to be more immunogenic than IM injection in hamsters and induced immunity that significantly reduced SARS-CoV-2 challenge virus loads in both lung and nasal tissues. INTERPRETATION: VSV∆G-SARS-CoV-2 delivered by IM injection or mucosal administration was immunogenic in golden Syrian hamsters, and both vaccination methods effectively protected the lung from SARS-CoV-2 infection. Hamsters vaccinated by mucosal application of VSV∆G-SARS-CoV-2 also developed immunity that controlled SARS-CoV-2 replication in nasal tissue. FUNDING: The study was funded by Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, and The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA. Parts of this research was supported by the Biomedical Advanced Research and Development Authority (BARDA) and the Defense Threat Reduction Agency (DTRA) of the US Department of Defense.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Mesocricetus , SARS-CoV-2 , Vírus da Estomatite Vesicular Indiana/genética , Imunogenicidade da Vacina
5.
Nat Commun ; 13(1): 2546, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538099

RESUMO

Human metapneumovirus (hMPV) belongs to the Pneumoviridae family and is closely related to respiratory syncytial virus (RSV). The surface fusion (F) glycoprotein mediates viral fusion and is the primary target of neutralizing antibodies against hMPV. Here we report 113 hMPV-F specific monoclonal antibodies (mAbs) isolated from memory B cells of human donors. We characterize the antibodies' germline usage, epitopes, neutralization potencies, and binding specificities. We find that unlike RSV-F specific mAbs, antibody responses to hMPV F are less dominant against the apex of the antigen, and the majority of the potent neutralizing mAbs recognize epitopes on the side of hMPV F. Furthermore, neutralizing epitopes that differ from previously defined antigenic sites on RSV F are identified, and multiple binding modes of site V and II mAbs are discovered. Interestingly, mAbs that bind preferentially to the unprocessed prefusion F show poor neutralization potency. These results elucidate the immune recognition of hMPV infection and provide novel insights for future hMPV antibody and vaccine development.


Assuntos
Metapneumovirus , Vírus Sincicial Respiratório Humano , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Células B de Memória , Proteínas Virais de Fusão
6.
Cell Host Microbe ; 30(1): 41-52.e5, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879230

RESUMO

Respiratory syncytial virus (RSV) infection is a major cause of respiratory illness in infants and the elderly. Although several vaccines have been developed, none have succeeded in part due to our incomplete understanding of the correlates of immune protection. While both T cells and antibodies play a role, emerging data suggest that antibody-mediated mechanisms alone may be sufficient to provide protection. Therefore, to map the humoral correlates of immunity against RSV, antibody responses across six different vaccines were profiled in a highly controlled nonhuman primate-challenge model. Viral loads were monitored in both the upper and lower respiratory tracts, and machine learning was used to determine the vaccine platform-agnostic antibody features associated with protection. Upper respiratory control was associated with virus-specific IgA levels, neutralization, and complement activity, whereas lower respiratory control was associated with Fc-mediated effector mechanisms. These findings provide critical compartment-specific insights toward the rational development of future vaccines.


Assuntos
Primatas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vacinação , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Chlorocebus aethiops , Humanos , Imunidade Inata , Imunoglobulina A/sangue , Pulmão/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Carga Viral
7.
NPJ Vaccines ; 5(1): 16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32128257

RESUMO

The RSV Fusion (F) protein is a target for neutralizing antibody responses and is a focus for vaccine discovery; however, the process of RSV entry requires F to adopt a metastable prefusion form and transition to a more stable postfusion form, which displays less potent neutralizing epitopes. mRNA vaccines encode antigens that are translated by host cells following vaccination, which may allow conformational transitions similar to those observed during natural infection to occur. Here we evaluate a panel of chemically modified mRNA vaccines expressing different forms of the RSV F protein, including secreted, membrane associated, prefusion-stabilized, and non-stabilized structures, for conformation, immunogenicity, protection, and safety in rodent models. Vaccination with mRNA encoding native RSV F elicited antibody responses to both prefusion- and postfusion-specific epitopes, suggesting that this antigen may adopt both conformations in vivo. Incorporating prefusion stabilizing mutations further shifts the immune response toward prefusion-specific epitopes, but does not impact neutralizing antibody titer. mRNA vaccine candidates expressing either prefusion stabilized or native forms of RSV F protein elicit robust neutralizing antibody responses in both mice and cotton rats, similar to levels observed with a comparable dose of adjuvanted prefusion stabilized RSV F protein. In contrast to the protein subunit vaccine, mRNA-based vaccines elicited robust CD4+ and CD8+ T-cell responses in mice, highlighting a potential advantage of the technology for vaccines requiring a cellular immune response for efficacy.

8.
MAbs ; 11(8): 1415-1427, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402751

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children and older adults. Currently, no licensed vaccine is available, and therapeutic options are limited. The primary target of neutralizing antibodies to RSV is the surface fusion (F) glycoprotein. Understanding the recognition of antibodies with high neutralization potencies to RSV F antigen will provide critical insights in developing efficacious RSV antibodies and vaccines. In this study, we isolated and characterized a panel of monoclonal antibodies (mAbs) with high binding affinity to RSV prefusion F trimer and neutralization potency to RSV viruses. The mAbs were mapped to previously defined antigenic sites, and some that mapped to the same antigenic sites showed remarkable diversity in specificity, binding, and neutralization potencies. We found that the isolated site III mAbs shared highly conserved germline V-gene usage, but had different cross-reactivities to human metapneumovirus (hMPV), possibly due to the distinct modes/angles of interaction with RSV and hMPV F proteins. Furthermore, we identified a subset of potent RSV/hMPV cross-neutralizing mAbs that target antigenic site IV and the recently defined antigenic site V, while the majority of the mAbs targeting these two sites only neutralize RSV. Additionally, the isolated mAbs targeting site Ø were mono-specific for RSV and showed a wide range of neutralizing potencies on different RSV subtypes. Our data exemplify the diversity of anti-RSV mAbs and provide new insights into the immune recognition of respiratory viruses in the Pneumoviridae family.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B/imunologia , Epitopos de Linfócito B/imunologia , Memória Imunológica , Vírus Sincicial Respiratório Humano/imunologia , Idoso , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Criança , Pré-Escolar , Humanos
9.
Vaccine X ; 2: 100030, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384745

RESUMO

The human papillomavirus (HPV) 9-valent, recombinant vaccine (Gardasil™9) helps protect young adults (males and females) against anogenital cancers and genital warts caused by certain HPV genotypes (ref. Gardasil™9 insert). This vaccine is administered intramuscularly (IM). The aim of this study was to determine preclinically whether intradermal (ID) vaccination with an unadjuvanted 9-valent recombinant HPV vaccine using a first-generation ID delivery device, the Nanopatch™, could enhance vaccine immunogenicity compared with the traditional ID route (Mantoux technique). IM injection of HPV VLPs formulated with Merck & Co., Inc., Kenilworth, NJ, USA Alum Adjuvant (MAA) were included in the rhesus study for comparison. The Nanopatch™ prototype contains a high-density array comprised of 10,000 microprojections/cm2, each 250 µm long. It was hypothesized the higher density array with shallower ID delivery may be superior to the Mantoux technique. To test this hypothesis, HPV VLPs without adjuvant were coated on the Nanopatch™, stability of the Nanopatch™ with unadjuvanted HPV VLPs were evaluated under accelerated conditions, skin delivery was verified using radiolabelled VLPs or FluoSpheres®, and the immune response and skin site reaction with the Nanopatch™ was evaluated in rhesus macaques. The immune response induced by Nanopatch™ administration, measured as HPV-specific binding antibodies, was similar to that induced using the Mantoux technique. It was also observed that a lower dose of unadjuvanted HPV VLPs delivered with the first-generation Nanopatch™ and applicator or Mantoux technique resulted in an immune response that was significantly lower compared to a higher-dose of alum adjuvanted HPV VLPs delivered IM in rhesus macaques. The study also indicated unadjuvanted HPV VLPs could be delivered with the first-generation Nanopatch™ and applicator to the skin in 15 s with a transfer efficiency of approximately 20%. This study is the first demonstration of patch administration in non-human primates with a vaccine composed of HPV VLPs.

10.
PLoS Pathog ; 15(6): e1007716, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170257

RESUMO

There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the ß-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra Dengue , Epitopos , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Vacinas contra Dengue/genética , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Epitopos/genética , Epitopos/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Macaca mulatta
11.
Vaccine ; 37(29): 3770-3778, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31153687

RESUMO

We are interested in developing a vaccine that prevents genital herpes. Adjuvants have a major impact on vaccine immunogenicity. We compared two adjuvants, an experimental Merck Sharp & Dohme lipid nanoparticle (LNP) adjuvant, LNP-2, with CpG oligonucleotide combined with alum for immunogenicity in mice when administered with herpes simplex virus type 2 (HSV-2) glycoproteins C, D and E (gC2, gD2, gE2). The immunogens are intended to produce neutralizing antibodies to gC2 and gD2, antibodies to gD2 and gE2 that block cell-to-cell spread, and antibodies to gE2 and gC2 that block immune evasion from antibody and complement, respectively. Overall, CpG/alum was better at producing serum and vaginal IgG binding antibodies, neutralizing antibodies, antibodies that block virus spread from cell-to-cell, and antibodies that block immune evasion domains on gC2. We used a novel high throughput biosensor assay to further assess differences in immunogenicity by mapping antibody responses to seven crucial epitopes on gD2 involved in virus entry or cell-to-cell spread. We found striking differences between CpG/alum and LNP-2. Mice immunized with gD2 CpG/alum produced higher titers of antibodies than LNP-2 to six of seven crucial epitopes and produced antibodies to more crucial epitopes than LNP-2. Measuring epitope-specific antibodies helped to define mechanisms by which CpG/alum outperformed LNP-2 and is a valuable technique to compare adjuvants.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Formação de Anticorpos , Epitopos/imunologia , Herpes Genital/prevenção & controle , Proteínas do Envelope Viral/imunologia , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Técnicas Biossensoriais , Feminino , Herpes Genital/imunologia , Vacinas contra Herpesvirus/imunologia , Evasão da Resposta Imune , Imunogenicidade da Vacina , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Proteínas do Envelope Viral/administração & dosagem , Internalização do Vírus
12.
J Virol Methods ; 263: 88-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30381239

RESUMO

Viral plaque assays are important tools in the development and evaluation of new antiviral drugs or vaccines in both preclinical and clinical research. While plaque assays are the standard tools to measure infectious virus, the methodology is time-consuming and requires experience in recognizing plaques. The assays are also prone to variation among analysts due to plaque recognition and manual counting errors. Here we describe the development of two simplified plaque assays for measuring RSV virus titers and anti-RSV antibody neutralization titers using 96 well plate formats. First, we evaluated multiple parameters to build up a quantitative plaque assay to measure infectious RSV. We then optimized the assay conditions to assess the fundamental changes from the traditional plaque assay, which were elimination of overnight pre-seeding host cells and addition of a centrifugation step after viral infection of the cells. We designed DoE to refine four key parameters within one experiment for host cell density, host cell volume, viral inoculum volume, host cell and viral mixture incubation time to make this assay more robust. We have also adapted these conditions into a second assay, which was an automated plaque reduction neutralization assay (PRNT) to determine neutralization titers of anti-RSV antibodies. Both assays utilize immune fluorescence staining to detect viral plaques. The images of the immuno-stained wells are captured by the PerkinElmer EnSight instrument and show clear visualization of plaques harvesting on day 3. Software algorithm was specifically designed for automatic counting of these fluorescent "objects". The quantitative plaque assay provided titers of RSV similar to those obtained from the traditional plaque assay. The method has been successfully utilized to screen multiple vaccine candidates in viral shedding efficacy studies. The automated PRNT assay provided antibody neutralizing titers that matched with published data. This automated 96 well plaque assay has made it possible to screen RSV samples in a higher throughput manner, and can be extended to other infectious organisms that form plaques for vaccine or drug evaluation.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Imagem Óptica , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/crescimento & desenvolvimento , Ensaio de Placa Viral/métodos , Algoritmos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação de Medicamentos , Feminino , Humanos , Testes de Neutralização , Reprodutibilidade dos Testes , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Sigmodontinae/imunologia , Sigmodontinae/virologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
13.
Hum Vaccin Immunother ; 15(9): 2195-2204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30427741

RESUMO

There is an unmet medical need for vaccines to prevent dengue. V180 is an investigational recombinant subunit vaccine that consists of truncated dengue envelope proteins (DEN-80E) for all 4 serotypes. Three dosage levels of the tetravalent DEN-80E antigens were assessed in a randomized, placebo-controlled, Phase I dose-escalation, first-in-human proof-of-principle trial in healthy, flavivirus-naïve adults in Australia (NCT01477580). The 9 V180 formulations that were assessed included either ISCOMATRIX™ adjuvant (2 dosage levels), aluminum-hydroxide adjuvant, or were unadjuvanted, and were compared to phosphate-buffered saline placebo. Volunteers received 3 injections of assigned product on a 0, 1, 2 month schedule, and were followed for safety through 1 year after the last injection. Antibody levels were assessed at 6 time-points: enrollment, 28 days after each injection, and 6 and 12 months Postdose 3 (PD3). Of the 98 randomized participants, 90 (92%) received all 3 injections; 83 (85%) completed 1-year follow-up. Immunogenicity was measured by a qualified Focus Reduction Neutralization Test with a 50% neutralization cutoff (FRNT50). All 6 V180 formulations with ISCOMATRIX™ adjuvant showed robust immunogenicity, while the 1 aluminum-adjuvanted and 2 unadjuvanted formulations were poorly immunogenic. Geometric mean antibody titers generally declined at 6 months and 1 year PD3. All 9 V180 formulations were generally well tolerated. Formulations with ISCOMATRIX™ adjuvant were associated with more adverse events than aluminum-adjuvanted or unadjuvanted formulations.


Assuntos
Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Imunogenicidade da Vacina , Adjuvantes Imunológicos/administração & dosagem , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas contra Dengue/administração & dosagem , Vírus da Dengue , Composição de Medicamentos , Feminino , Humanos , Esquemas de Imunização , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Estudo de Prova de Conceito , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adulto Jovem
14.
Vaccine ; 36(52): 8119-8130, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340881

RESUMO

Respiratory Syncytial Virus (RSV) infection is the leading cause of lower respiratory tract infection in both young children and older adults. Currently, there is no licensed vaccine available, and therapeutic options are limited. The infectious RSV particle is decorated with a type I viral fusion (F) glycoprotein that structurally rearranges from a metastable prefusion form to a highly stable postfusion form. In people naturally infected with RSV, the neutralizing antibodies primarily recognize the prefusion conformation. Therefore, engineered RSV F protein stabilized in its prefusion conformation has been an attractive strategy for developing RSV F vaccine antigens. Long-term stability at 4 °C or higher is a desirable attribute for a RSV F subunit vaccine antigen. We have previously shown that a prefusion stabilized RSV F construct, DS-Cav1, undergoes conformational changes and forms intermediate structures upon long-term storage at 4 °C. Structure-based design was performed to improve the stability of the RSV F subunit vaccine. We identified additional mutations that further stabilize RSV F protein in its prefusion conformation by using binding to a previously described antigenic site I antibody 4D7 as the screening tool. In addition, we designed and identified variants with increased expression levels, which is another desirable attribute for a subunit vaccine. Our data suggested that an RSV F variant F111 is properly folded, and has improved heat stability as well as stability upon long-term storage at 4 °C. A mouse immunogenicity study demonstrated that no compromise in immunogenicity (both binding and neutralizing antibody levels) was observed with the introduction of these additional mutations.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Temperatura Baixa , Feminino , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão/genética
15.
PLoS One ; 12(11): e0187642, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121080

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of serious lower respiratory tract disease in young children and older adults throughout the world. Prevention of severe RSV disease through active immunization is optimal but no RSV vaccine has been licensed so far. Immune mechanisms of protection against RSV infection in humans have not been fully established, thus a comprehensive characterization of virus-specific immune responses in a relevant animal model will be beneficial in defining correlates of protection. In this study, we infected juvenile naive AGMs with RSV A2 strain and longitudinally assessed virus-specific humoral and cellular immune responses in both peripheral blood and the respiratory tract. RSV viral loads at nasopharyngeal surfaces and in the lung peaked at around day 5 following infection, and then largely resolved by day 10. Low levels of neutralizing antibody titers were detected in serum, with similar kinetics as RSV fusion (F) protein-binding IgG antibodies. RSV infection induced CD8+, but very little CD4+, T lymphocyte responses in peripheral blood. Virus-specific CD8+ T cell frequencies were ~10 fold higher in bronchoaveolar lavage (BAL) compared to peripheral blood and exhibited effector memory (CD95+CD28-) / tissue resident memory (CD69+CD103+) T (TRM) cell phenotypes. The kinetics of virus-specific CD8+ T cells emerging in peripheral blood and BAL correlated with declining viral titers, suggesting that virus-specific cellular responses contribute to the clearance of RSV infection. RSV-experienced AGMs were protected from subsequent exposure to RSV infection. Additional studies are underway to understand protective correlates in these seropositive monkeys.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Memória Imunológica , Pulmão/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos CD/sangue , Antígenos CD/imunologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Chlorocebus aethiops , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Pulmão/metabolismo , Infecções por Vírus Respiratório Sincicial/sangue , Vírus Sinciciais Respiratórios/metabolismo
16.
Hum Vaccin Immunother ; 13(12): 2763-2771, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28494195

RESUMO

T cell immunity is critical in controlling human cytomegalovirus (HCMV) infection in transplant recipients, and T cells targeting viral immediate early proteins such as IE1, IE2 and pp65 have been speculated to be more effective against reactivation. Here we report efforts to construct replication incompetent adenovirus 6 vectors expressing these viral antigens as vaccine candidates. To reduce the potential liabilities of these viral proteins as vaccine antigens, we introduced mutations to inactivate their reported functions including their nuclear localization signals. The modifications greatly reduced their localization to the nuclei, thus limiting their interactions with cellular proteins important for cell cycle modulation and transactivation. The immunogenicity of modified pp65, IE1 and IE2 vaccines was comparable to their wild-type counterparts in mice and the immunogenicity of the modified antigens was demonstrated in non-human primates.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Vírus Defeituosos/genética , Portadores de Fármacos , Vetores Genéticos , Mastadenovirus/genética , Animais , Antígenos Virais/genética , Citomegalovirus/genética , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/efeitos adversos , Vacinas contra Citomegalovirus/genética , Feminino , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Primatas , Transativadores/genética , Transativadores/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
17.
Vaccines (Basel) ; 4(4)2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27929422

RESUMO

A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs) markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg) and Ovalbumin (OVA), respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA) to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered-both at the same time and in the same location-in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties.

18.
Front Immunol ; 7: 457, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867380

RESUMO

Large-scale study of the properties of T-cell receptor (TCR) and B-cell receptor (BCR) repertoires through next-generation sequencing is providing excellent insights into the understanding of adaptive immune responses. Variable(Diversity)Joining [V(D)J] germline genes and alleles must be characterized in detail to facilitate repertoire analyses. However, most species do not have well-characterized TCR/BCR germline genes because of their high homology. Also, more germline alleles are required for humans and other species, which limits the capacity for studying immune repertoires. Herein, we developed "Immune Germline Prediction" (IMPre), a tool for predicting germline V/J genes and alleles using deep-sequencing data derived from TCR/BCR repertoires. We developed a new algorithm, "Seed_Clust," for clustering, produced a multiway tree for assembly and optimized the sequence according to the characteristics of rearrangement. We trained IMPre on human samples of T-cell receptor beta (TRB) and immunoglobulin heavy chain and then tested it on additional human samples. Accuracy of 97.7, 100, 92.9, and 100% was obtained for TRBV, TRBJ, IGHV, and IGHJ, respectively. Analyses of subsampling performance for these samples showed IMPre to be robust using different data quantities. Subsequently, IMPre was tested on samples from rhesus monkeys and human long sequences: the highly accurate results demonstrated IMPre to be stable with animal and multiple data types. With rapid accumulation of high-throughput sequence data for TCR and BCR repertoires, IMPre can be applied broadly for obtaining novel genes and a large number of novel alleles. IMPre is available at https://github.com/zhangwei2015/IMPre.

19.
PLoS One ; 11(10): e0164789, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764150

RESUMO

Infection with Respiratory Syncytial Virus (RSV) causes both upper and lower respiratory tract disease in humans, leading to significant morbidity and mortality in both young children and older adults. Currently, there is no licensed vaccine available, and therapeutic options are limited. During the infection process, the type I viral fusion (F) glycoprotein on the surface of the RSV particle rearranges from a metastable prefusion conformation to a highly stable postfusion form. In people naturally infected with RSV, most potent neutralizing antibodies are directed to the prefusion form of the F protein. Therefore, an engineered RSV F protein stabilized in the prefusion conformation (DS-Cav1) is an attractive vaccine candidate. Long-term stability at 4°C or higher is a desirable attribute for a commercial subunit vaccine antigen. To assess the stability of DS-Cav1, we developed assays using D25, an antibody which recognizes the prefusion F-specific antigenic site Ø, and a novel antibody 4D7, which was found to bind antigenic site I on the postfusion form of RSV F. Biophysical analysis indicated that, upon long-term storage at 4°C, DS-Cav1 undergoes a conformational change, adopting alternate structures that concomitantly lose the site Ø epitope and gain the ability to bind 4D7.


Assuntos
Antígenos/imunologia , Vírus Sincicial Respiratório Humano/metabolismo , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Virais de Fusão/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo/imunologia , Antígenos/metabolismo , Epitopos/imunologia , Células HEK293 , Humanos , Microscopia Eletrônica de Transmissão , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Ressonância de Plasmônio de Superfície , Vacinas de Subunidades Antigênicas/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
20.
Sci Rep ; 6: 34215, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703172

RESUMO

Dengue virus has emerged as an important arboviral infection worldwide. As a complex pathogen, with four distinct serotypes, the development of a successful Dengue virus vaccine has proven to be challenging. Here, we describe a novel Dengue vaccine candidate that contains truncated, recombinant, Dengue virus envelope protein from all four Dengue virus serotypes (DEN-80E) formulated with ionizable cationic lipid nanoparticles (LNPs). Immunization studies in mice, Guinea pigs, and in Rhesus macaques, revealed that LNPs induced high titers of Dengue virus neutralizing antibodies, with or without co-administration or encapsulation of a Toll-Like Receptor 9 agonist. Importantly, LNPs were also able to boost DEN-80E specific CD4+ and CD8+ T cell responses. Cytokine and chemokine profiling revealed that LNPs induced strong chemokine responses without significant induction of inflammatory cytokines. In addition to being highly efficacious, the vaccine formulation proved to be well-tolerated, demonstrating no elevation in any of the safety parameters evaluated. Notably, reduction in cationic lipid content of the nanoparticle dramatically reduced the LNP's ability to boost DEN-80E specific immune responses, highlighting the crucial role for the charge of the LNP. Overall, our novel studies, across multiple species, reveal a promising tetravalent Dengue virus sub-unit vaccine candidate.


Assuntos
Vacinas contra Dengue , Vírus da Dengue/imunologia , Dengue , Imunização Secundária , Lipídeos , Proteínas do Envelope Viral , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Vacinas contra Dengue/química , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/farmacologia , Feminino , Cobaias , Humanos , Lipídeos/química , Lipídeos/imunologia , Lipídeos/farmacologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...