Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 62(11): 2317-29, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21945560

RESUMO

Phytoplankton diversity, primary and bacterial production, nutrients and metallic contaminants were measured during the wet season (July) and dry season (March) in the Bach Dang Estuary, a sub-estuary of the Red River system, Northern Vietnam. Using canonical correspondence analysis we show that phytoplankton community structure is potentially influenced by both organometallic species (Hg and Sn) and inorganic metal (Hg) concentrations. During March, dissolved methylmercury and inorganic mercury were important factors for determining phytoplankton community composition at most of the stations. In contrast, during July, low salinity phytoplankton community composition was associated with particulate methylmercury concentrations, whereas phytoplankton community composition in the higher salinity stations was more related to dissolved inorganic mercury and dissolved mono and tributyltin concentrations. These results highlight the importance of taking into account factors other than light and nutrients, such as eco-toxic heavy metals, in understanding phytoplankton diversity and activity in estuarine ecosystems.


Assuntos
Biodiversidade , Demografia , Monitoramento Ambiental/estatística & dados numéricos , Fitoplâncton/fisiologia , Estações do Ano , Radioisótopos de Carbono/análise , Citometria de Fluxo , Mercúrio/análise , Metais Pesados/análise , Compostos de Metilmercúrio/análise , Oceanos e Mares , Fotossíntese/fisiologia , Dinâmica Populacional , Rios , Salinidade , Vietnã
2.
Environ Microbiol ; 13(7): 1842-57, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21605305

RESUMO

Population dynamics in the microbial food web are influenced by resource availability and predator/parasitism activities. Climatic changes, such as an increase in temperature and/or UV radiation, can also modify ecological systems in many ways. A series of enclosure experiments was conducted using natural microbial communities from a Mediterranean lagoon to assess the response of microbial communities to top-down control [grazing by heterotrophic nanoflagellates (HNF), viral lysis] and bottom-up control (nutrients) under various simulated climatic conditions (temperature and UV-B radiations). Different biological assemblages were obtained by separating bacteria and viruses from HNF by size fractionation which were then incubated in whirl-Pak bags exposed to an increase of 3°C and 20% UV-B above the control conditions for 96 h. The assemblages were also provided with an inorganic and organic nutrient supply. The data show (i) a clear nutrient limitation of bacterial growth under all simulated climatic conditions in the absence of HNF, (ii) a great impact of HNF grazing on bacteria irrespective of the nutrient conditions and the simulated climatic conditions, (iii) a significant decrease in burst size (BS) (number of intracellular lytic viruses per bacterium) and a significant increase of VBR (virus to bacterium ratio) in the presence of HNF, and (iv) a much larger temperature effect than UV-B radiation effect on the bacterial dynamics. These results show that top-down factors, essentially HNF grazing, control the dynamics of the lagoon bacterioplankton assemblage and that short-term simulated climate changes are only a secondary effect controlling microbial processes.


Assuntos
Bactérias/crescimento & desenvolvimento , Mudança Climática , Cadeia Alimentar , Fitoplâncton/crescimento & desenvolvimento , Vírus/crescimento & desenvolvimento , Microbiologia da Água , Bactérias/virologia , Ecossistema , Mar Mediterrâneo , Fitoplâncton/microbiologia , Fitoplâncton/virologia , Dinâmica Populacional , Análise de Componente Principal , Água do Mar/microbiologia , Água do Mar/virologia , Temperatura , Raios Ultravioleta
3.
Aquat Microb Ecol ; 57(3): 321-341, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27478304

RESUMO

Viral abundance and processes in the water column and sediments are well studied for some systems; however, we know relatively little about virus-host interactions on particles and how particles influence these interactions. Here we review virus-prokaryote interactions on inorganic and organic particles in the water column. Profiting from recent methodological progress, we show that confocal laser scanning microscopy in combination with lectin and nucleic acid staining is one of the most powerful methods to visualize the distribution of viruses and their hosts on particles such as organic aggregates. Viral abundance on suspended matter ranges from 105 to 1011 ml-1. The main factors controlling viral abundance are the quality, size and age of aggregates and the exposure time of viruses to aggregates. Other factors such as water residence time likely act indirectly. Overall, aggregates appear to play a role of viral scavengers or reservoirs rather than viral factories. Adsorption of viruses to organic aggregates or inorganic particles can stimulate growth of the free-living prokaryotic community, e.g. by reducing viral lysis. Such mechanisms can affect microbial diversity, food web structure and biogeochemical cycles. Viral lysis of bacterio- and phytoplankton influences the formation and fate of aggregates and can, for example, result in a higher stability of algal flocs. Thus, viruses also influence carbon export; however, it is still not clear whether they short-circuit or prime the biological pump. Throughout this review, emphasis has been placed on defining general problems and knowledge gaps in virus-particle interactions and on providing avenues for further research, particularly those linked to global change.

4.
J Microbiol Methods ; 71(3): 212-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17897741

RESUMO

We have described the use of Polyethylene glycol (PEG) for the precipitation of natural communities of aquatic viruses, and its comparison with the usual concentration method based on ultracentrifugation. Experimental samples were obtained from different freshwater ecosystems whose trophic status varied. Based on transmission electron microscope observations and counting of phage-shaped particles, our results showed that the greatest recovery efficiency for all ecosystems was obtained when we used the PEG protocol. On average, this protocol allowed the recovery of >2-fold more viruses, compared to ultracentrifugation. In addition, the diversity of virioplankton, based on genomic size profiling using pulsed field gel electrophoresis, was higher and better discriminated when we used the PEG method. We conclude that pegylation offers a valid, simple and cheaper alternative method to ultracentrifugation, for the concentration and the purification of pelagic viruses.


Assuntos
Água Doce/virologia , Polietilenoglicóis/química , Cultura de Vírus/métodos , Vírus/isolamento & purificação , Microbiologia da Água , Bacteriófagos/isolamento & purificação , Precipitação Química , Ecossistema , Monitoramento Ambiental/métodos , Genoma Viral/genética , Microscopia Eletrônica de Transmissão , Plâncton/virologia , Ultracentrifugação , Vírus/genética , Vírus/ultraestrutura
5.
Microb Ecol ; 45(2): 119-27, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12545309

RESUMO

Abundances of different compartments of the microbial loop (i.e., viruses, heterotrophic bacteria, nonpigmented nanoflagellates, and pigmented nanoflagellates), bacterial heterotrophic production (BHP), viral lysis, and potential flagellate grazing impacts on the bacterial assemblages were estimated during a short-term study (24 h) conducted in June 1998 in the epilimnion (5 m) and metalimnion (10 m) of a moderate-altitude oligomesotrophic lake (Lake Pavin, France). Viral and bacterial abundances were higher in the metalimnion than in the epilimnion, whereas pigmented and nonpigmented nanoflagellates were more numerous in the epilimnion. The control of the BHP due to viral lysis (determined by examination of viral-containing bacteria using a transmission electron microscope) was significantly higher in the meta- (range = 6.0-33.7%, mean = 15.6%) than in the epilimnion (3.5-10.3%, 6.4%). The same was for the losses of BHP from the potential predation by nanoflagellates which ranged from 0.5 to 115.4% (mean = 38.7%) in the epilimnion, and from 0.7 to 97.5% (mean = 66.7%) in the metalimnion. Finally, estimated viral mediated mortality rates from the percentage of visibly infected cells and potential nanoflagellate grazing rates based on assumed clearance rates suggest that flagellates consumed a larger proportion of bacterial production than was lost to viral lysis.


Assuntos
Bactérias/crescimento & desenvolvimento , Ecossistema , Eucariotos/crescimento & desenvolvimento , Vírus/crescimento & desenvolvimento , Microbiologia da Água , Animais , Bactérias/virologia , Contagem de Células , França , Água Doce , Microscopia Eletrônica
6.
FEMS Microbiol Ecol ; 42(3): 451-62, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19709304

RESUMO

Planktonic microbial communities often appear stable over periods of days and thus tight links are assumed to exist between different functional groups (i.e. producers and consumers). We examined these links by characterizing short-term temporal correspondences in the concentrations and activities of microbial groups sampled from 1 m depth, at a coastal site of the N.W. Mediterranean Sea, in September 2001 every 3 h for 3 days. We estimated the abundance and activity rates of the autotrophic prokaryote Synechococcus, heterotrophic bacteria, viruses, heterotrophic nanoflagellates, as well as dissolved organic carbon concentrations. We found that Synechococcus, heterotrophic bacteria, and viruses displayed distinct patterns. Synechococcus abundance was greatest at midnight and lowest at 21:00 and showed the common pattern of an early evening maximum in dividing cells. In contrast, viral concentrations were minimal at midnight and maximal at 18:00. Viral infection of heterotrophic bacteria was rare (0.5-2.5%) and appeared to peak at 03:00. Heterotrophic bacteria, as % eubacteria-positive cells, peaked at midday, appearing loosely related to relative changes in dissolved organic carbon concentration. Bacterial production as assessed by leucine incorporation showed no consistent temporal pattern but could be related to shifts in the grazing rates of heterotrophic nanoflagellates and viral infection rates. Estimates of virus-induced mortality of heterotrophic bacteria, based on infection frequencies, were only about 10% of cell production. Overall, the dynamics of viruses appeared more closely related to Synechococcus than to heterotrophic bacteria. Thus, we found weak links between dissolved organic carbon concentration, or grazing, and bacterial activity, a possibly strong link between Synechococcus and viruses, and a missing link between light and viruses.

7.
Appl Environ Microbiol ; 66(6): 2283-9, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10831400

RESUMO

In this study, we compared different methods-including transmission electron microscopy-and various nucleic acid labeling methods in which we used the fluorochromes 4',6'-diamidino-2-phenylindole (DAPI), 4-[3-methyl-2,3-dihydro-(benzo-1, 3-oxazole)-2-methylmethyledene]-1-(3'-trimethyl ammoniumpropyl)-quinilinium diioide (YOPRO-1), and SYBR Green I, which can be detected by epifluorescence microscopy (EM), for counting viruses in samples obtained from freshwater ecosystems whose trophic status varied and from a culture of T7 phages. From a quantitative and qualitative viewpoint, our results showed that the greatest efficiency for all ecosystems was obtained when we used the EM counting protocol in which YOPRO-1 was the label, as this fluorochrome exhibited strong and very stable fluorescence. A modification of the original protocol in which YOPRO-1 was used is recommended, because this modification makes the protocol faster and allows it to be used for routine analysis of fixed samples. Because SYBR Green I fades very quickly, the use of this fluorochrome is not recommended for systems in which the viral content is very high (>10(8) particles/ml), such as treated domestic sewage effluents. Experiments in which we used DNase and RNase revealed that the number of viruses determined by EM was slightly overestimated (by approximately 15%) because of interference caused by the presence of free nucleic acids.


Assuntos
Ecossistema , Plâncton/virologia , Vírus/crescimento & desenvolvimento , Microbiologia da Água , Animais , Desoxirribonucleases/metabolismo , Corantes Fluorescentes/metabolismo , Indóis/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Ácidos Nucleicos/metabolismo , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...