Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-517139

RESUMO

BackgroundThroughout the COVID-19 pandemic, the SARS-CoV-2 virus has continued to evolve, with new variants outcompeting existing variants and often leading to different dynamics of disease spread. MethodsIn this paper, we performed a retrospective analysis using longitudinal sequencing data to characterize differences in the speed, calendar timing, and magnitude of 13 SARS-CoV-2 variant waves/transitions for 215 countries and sub-country regions, between October 2020 and October 2022. We then clustered geographic locations in terms of their variant behavior across all Omicron variants, allowing us to identify groups of locations exhibiting similar variant transitions. Finally, we explored relationships between heterogeneity in these variant waves and time-varying factors, including vaccination status of the population, governmental policy, and the number of variants in simultaneous competition. FindingsThis work demonstrates associations between the behavior of an emerging variant and the number of co-circulating variants as well as the demographic context of the population. We also observed an association between high vaccination rates and variant transition dynamics prior to the Mu and Delta variant transitions. InterpretationThese results suggest the behavior of an emergent variant may be sensitive to the immunologic and demographic context of its location. Additionally, this work represents the most comprehensive characterization of variant transitions globally to date. FundingLaboratory Directed Research and Development (LDRD), Los Alamos National Laboratory Research in contextO_ST_ABSEvidence before this studyC_ST_ABSSARS-CoV-2 variants with a selective advantage are continuing to emerge, resulting in variant transitions that can give rise to new waves in global COVID-19 cases and changing dynamics of disease spread. While variant transitions have been well studied individually, more work is needed to better understand how variant transitions have occurred in the past and how properties of these transitions may relate to vaccination rates, natural immunity, and population demographics. Added value of this studyOur retrospective study integrates metadata based on 12.8 million SARS-CoV-2 sequences available through the Global Initiative on Sharing All Influenza Data (GISAID) with clinical and demographic data to characterize heterogeneity in variant waves/transitions across the globe throughout the COVID-19 pandemic. We demonstrate that properties of the variant transitions (e.g., speed, timing, and magnitude of the transition) are associated with vaccination rates, prior COVID-19 cases, and the number of co-circulating variants in competition. Implications of all the available evidenceOur results indicate that there is substantial heterogeneity in how an emerging variant may compete with other viral variants across locations, and suggest that each locations contemporaneous immunologic landscape may play a role in these interactions.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-514722

RESUMO

Omicron BA.5 has been the globally dominant SARS-CoV-2 variant and has demonstrated substantial neutralization escape compared with prior variants. Additional Omicron variants have recently emerged, including BA.4.6, BF.7, BA.2.75.2, and BQ.1.1, all of which have the Spike R346T mutation. In particular, BQ.1.1 has rapidly increased in frequency, and BA.5 has recently declined to less than half of viruses in the United States. Our data demonstrate that BA.2.75.2 and BQ.1.1 escape NAbs induced by infection and vaccination more effectively than BA.5. BQ.1.1 NAb titers were lower than BA.5 NAb titers by a factor of 7 in two cohorts of individuals who received the monovalent or bivalent mRNA vaccine boosters. These findings provide the immunologic context for the rapid increase in BQ.1.1 prevalence in regions where BA.5 is dominant and have implications for both vaccine immunity and natural immunity.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-505450

RESUMO

The prevalence of the Omicron subvariant BA.2.75 is rapidly increasing in India and Nepal. In addition, BA.2.75 has been detected in at least 34 other countries and is spreading globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs was higher than that of BA.2 and BA.5. Of note, BA.2.75 caused focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which was not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicated better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 and should be closely monitored.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-477784

RESUMO

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor binding domain (RBD) and neutralizing antibody epitope presentation affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267805

RESUMO

The Omicron variant of SARS-CoV-2 is raising concerns because of its increased transmissibility and potential for reduced susceptibility to antibody neutralization. To assess the potential risk of this variant to existing vaccines, serum samples from mRNA-1273 vaccine recipients were tested for neutralizing activity against Omicron and compared to neutralization titers against D614G and Beta in live virus and pseudovirus assays. Omicron was 41-84-fold less sensitive to neutralization than D614G and 5.3-7.4-fold less sensitive than Beta when assayed with serum samples obtained 4 weeks after 2 standard inoculations with 100 {micro}g mRNA-1273. A 50 {micro}g boost increased Omicron neutralization titers and may substantially reduce the risk of symptomatic vaccine breakthrough infections.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-458946

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has triggered myriad efforts to dissect and understand the structure and dynamics of this complex pathogen. The Spike glycoprotein of SARS-CoV-2 has received special attention as it is the means by which the virus enters the human host cells. The N-terminal domain (NTD) is one of the targeted regions of the Spike protein for therapeutics and neutralizing antibodies against COVID-19. Though its function is not well-understood, the NTD is reported to acquire mutations and deletions that can accelerate the evolutionary adaptation of the virus driving antibody escape. Cellular processes are known to be regulated by complex interactions at the molecular level, which can be characterized by means of a graph representation facilitating the identification of key residues and critical communication pathways within the molecular complex. From extensive all-atom molecular dynamics simulations of the entire Spike for the wild-type and the dominant variant, we derive a weighted graph representation of the protein in two dominant conformations of the receptor-binding-domain; all-down and one-up. We implement graph theory techniques to characterize the relevance of specific residues at facilitating roles of communication and control, while uncovering key implications for fitness and adaptation. We find that many of the reported high-frequency mutations tend to occur away from the critical residues highlighted by our graph theory analysis, implying that these mutations tend to avoid targeting residues that are most critical for protein allosteric communication. We propose that these critical residues could be candidate targets for novel antibody therapeutics. In addition, our analysis provides quantitative insights of the critical role of the NTD and furin cleavage site and their wide-reaching influence over the protein at large. Many of our conclusions are supported by empirical evidence while others point the way towards crucial simulation-guided experiments.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-437783

RESUMO

COVID-19 is a highly infectious respiratory disease caused by the novel coronavirus SARS-CoV-2. It has become a global pandemic and its frequent mutations may pose new challenges for vaccine design. During viral infection, the Spike RBD of SARS-CoV-2 binds the human host cell receptor ACE2, enabling the virus to enter the host cell. Both the Spike and ACE2 are densely glycosylated, and it is unclear how distinctive glycan types may modulate the interaction of RBD and ACE2. Detailed understanding of these determinants is key for the development of novel therapeutic strategies. To this end, we perform extensive all-atom simulations of the (i) RBD-ACE2 complex without glycans, (ii) RBD-ACE2 with oligomannose MAN9 glycans in ACE2, and (iii) RBD-ACE2 with complex FA2 glycans in ACE2. These simulations identify the key residues at the RBD-ACE2 interface that form contacts with higher probabilities, thus providing a quantitative evaluation that complements recent structural studies. Notably, we find that this RBD-ACE2 contact signature is not altered by the presence of different glycoforms, suggesting that RBD-ACE2 interaction is robust. Applying our simulated results, we illustrate how the recently prevalent N501Y mutation may alter specific interactions with host ACE2 that facilitate the virus-host binding. Furthermore, our simulations reveal how the glycan on Asn90 of ACE2 can play a distinct role in the binding and unbinding of RBD. Finally, an energetics analysis shows that MAN9 glycans on ACE2 decrease RBD-ACE2 affinity, while FA2 glycans lead to enhanced binding of the complex. Together, our results provide a more comprehensive picture of the detailed interplay between virus and human receptor, which is much needed for the discovery of effective treatments that aim at modulating the physical-chemical properties of this virus.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-428535

RESUMO

The SARS-CoV-2 variant carrying the Spike protein mutation G614 was first detected in late January 2020 and within a few months became the dominant form globally. In the months that followed, many studies, both in vitro and in animal models, showed that variants carrying this mutation were more infectious and more readily transmitted than the ancestral Wuhan form. Here we investigate why a recently published study by van Dorp et al. failed to detect such higher transmissibility of the G614 variant using homoplasy-based methods. We show that both low diversity and recombination confound the methods utilized by van Dorp et al. and significantly decrease their sensitivity. Furthermore, though they claim no evidence of recombination in their dataset, we and several other studies identify a subset of the sequences as recombinants, possibly enough to affect their statistic adversely.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-428516

RESUMO

The SARS-CoV-2 Spike glycoprotein mediates virus entry and is a major target for neutralizing antibodies. All current vaccines are based on the ancestral Spike with the goal of generating a protective neutralizing antibody response. Several novel SARS-CoV-2 variants with multiple Spike mutations have emerged, and their rapid spread and potential for immune escape have raised concerns. One of these variants, first identified in the United Kingdom, B.1.1.7 (also called VUI202012/01), contains eight Spike mutations with potential to impact antibody therapy, vaccine efficacy and risk of reinfection. Here we employed a lentivirus-based pseudovirus assay to show that variant B.1.1.7 remains sensitive to neutralization, albeit at moderately reduced levels (~2-fold), by serum samples from convalescent individuals and recipients of two different vaccines based on ancestral Spike: mRNA-1273 (Moderna), and protein nanoparticle NVX-CoV2373 (Novavax). Some monoclonal antibodies to the receptor binding domain (RBD) of Spike were less effective against the variant while others were largely unaffected. These findings indicate that B.1.1.7 is not a neutralization escape variant that would be a major concern for current vaccines, or for an increased risk of reinfection.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-219741

RESUMO

The COVID-19 pandemic underwent a rapid transition with the emergence of a SARS-CoV-2 variant that carried the amino acid substitution D614G in the Spike protein that became globally prevalent. The G-form is both more infectious in vitro and associated with increased viral loads in infected people. To gain insight into the mechanism underlying these distinctive characteristics, we employed multiple replicas of microsecond all-atom simulations to probe the molecular-level impact of this substitution on Spikes closed and open states. The open state enables Spike interactions with its human cellular receptor, ACE2. Here we show that changes in the inter-protomer energetics due to the D614G substitution favor a higher population of infection-capable (open) states. The inter-protomer interactions between S1 and S2 subunits in the open state of the D-form are asymmetric. This asymmetry is resolved in the G-form due to the release of tensile hydrogen bonds resulting in an increased population of open conformations. Thus, the increased infectivity of the G-form is likely due to a higher rate of profitable binding encounters with the host receptor. It is also predicted to be more neutralization sensitive due to enhanced exposure of the receptor binding domain, a key target region for neutralizing antibodies.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20159905

RESUMO

The SARS-CoV-2 Spike protein acquired a D614G mutation early in the COVID-19 pandemic that appears to confer on the virus greater infectivity and is now the globally dominant form of the virus. Certain of the current vaccines entering phase 3 trials are based on the original D614 form of Spike with the goal of eliciting protective neutralizing antibodies. To determine whether D614G mediates neutralization-escape that could compromise vaccine efficacy, sera from Spike-immunized mice, nonhuman primates and humans were evaluated for neutralization of pseudoviruses bearing either D614 or G614 Spike on their surface. In all cases, the G614 pseudovirus was moderately more susceptible to neutralization. The G614 pseudovirus also was more susceptible to neutralization by monoclonal antibodies against the receptor binding domain and by convalescent sera from people known to be infected with either the D614 or G614 form of the virus. These results indicate that a gain in infectivity provided by D614G came at the cost of making the virus more vulnerable to neutralizing antibodies, and that the mutation is not expected to be an obstacle for current vaccine development.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-069054

RESUMO

We have developed an analysis pipeline to facilitate real-time mutation tracking in SARS-CoV-2, focusing initially on the Spike (S) protein because it mediates infection of human cells and is the target of most vaccine strategies and antibody-based therapeutics. To date we have identified thirteen mutations in Spike that are accumulating. Mutations are considered in a broader phylogenetic context, geographically, and over time, to provide an early warning system to reveal mutations that may confer selective advantages in transmission or resistance to interventions. Each one is evaluated for evidence of positive selection, and the implications of the mutation are explored through structural modeling. The mutation Spike D614G is of urgent concern; it began spreading in Europe in early February, and when introduced to new regions it rapidly becomes the dominant form. Also, we present evidence of recombination between locally circulating strains, indicative of multiple strain infections. These finding have important implications for SARS-CoV-2 transmission, pathogenesis and immune interventions.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-000885

RESUMO

COVID-19 has become a global pandemic caused by a novel coronavirus SARS-CoV-2. Understanding the origins of SARS-CoV-2 is critical for deterring future zoonosis and for drug discovery and vaccine development. We show evidence of strong purifying selection around the receptor binding motif (RBM) in the spike gene and in other genes among bat, pangolin and human coronaviruses, indicating similar strong evolutionary constraints in different host species. We also demonstrate that SARS-CoV-2s entire RBM was introduced through recombination with coronaviruses from pangolins, possibly a critical step in the evolution of SARS-CoV-2s ability to infect humans. Similar purifying selection in different host species and frequent recombination among coronaviruses suggest a common evolutionary mechanism that could lead to new emerging human coronaviruses. One Sentence SummaryExtensive Recombination and Strong Purifying Selection among coronaviruses from different hosts facilitate the emergence of SARS-CoV-2

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...