Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 40: 1-15, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100319

RESUMO

BACKGROUND: Grapevine is a woody, perennial plant of high economic importance worldwide. Like other plants, it lives in close association with large numbers of microorganisms. Bacteria, fungi and viruses are structured in communities, and each individual can be beneficial, neutral or harmful to the plant. In this sense, microorganisms can interact with each other and regulate plant functions (including immunity) and even provide new ones. Thus, the grapevine associated with its microbial communities constitutes a supra-organism, also called a holobiont, whose functioning is linked to established plant-microorganism interactions. AIM OF REVIEW: The overall health of the plant may be conditioned by the diversity and structure of microbial communities. Consequently, an optimal microbial composition will consist of a microbial balance allowing the plant to be healthy. Conversely, an imbalance of microbial populations could lead to (or be generated by) a decline of the plant. The microbiome is an active component of the host also responsive to biotic and abiotic changes; in that respect, a better understanding of the most important drivers of the composition of plant microbiomes is needed. KEY SCIENTIFIC CONCEPTS OF REVIEW: This article presents the current state of the art about the grapevine microbiota and its composition according to the plant compartments and the influencing factors. We also focus on situations of imbalance, in particular during plant disease or decline. Finally, we discuss the possible interest of microbial engineering in an agrosystem such as viticulture.


Assuntos
Microbiota , Bactérias , Fungos , Doenças das Plantas , Plantas
2.
Mycorrhiza ; 31(6): 655-669, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34633544

RESUMO

Modern agriculture is currently undergoing rapid changes in the face of the continuing growth of world population and many ensuing environmental challenges. Crop quality is becoming as important as crop yield and can be characterised by several parameters. For fruits and vegetables, quality descriptors can concern production cycle (e.g. conventional or organic farming), organoleptic qualities (e.g. sweet taste, sugar content, acidity) and nutritional qualities (e.g. mineral content, vitamins). For other crops, however, the presence of secondary metabolites such as anthocyanins or certain terpenes in the targeted tissues is of interest as well, especially for their human health properties. All plants are constantly interacting with microorganisms. These microorganisms include arbuscular mycorrhizal fungi as well as certain soil bacteria that provide ecosystem services related to plant growth, nutrition and quality parameters. This review is an update of current research on the single and combined (co-inoculation) use of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in crop production, with a focus on their positive impacts on crop quality traits (e.g. nutritional value, organoleptic properties). We also highlight the need to dissect mechanisms regulating plant-symbionts and symbiont-symbiont interactions, to develop farming practices and to study a broad range of interactions to optimize the symbiotic potential of root-associated microorganisms.


Assuntos
Micorrizas , Antocianinas , Bactérias , Produção Agrícola , Produtos Agrícolas , Ecossistema , Raízes de Plantas , Simbiose
3.
Trends Plant Sci ; 25(4): 381-394, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983620

RESUMO

Woody plant (WP) declines have multifactorial determinants as well as a biological and economic reality. The vascular system of WPs involved in the transport of carbon, nitrogen, and water from sources to sinks has a seasonal activity, which places it at a central position for mediating plant-environment interactions from nutrient cycling to community assembly and for regulating a variety of processes. To limit effects and to fight against declines, we propose: (i) to consider the WP and its associated microbiota as an holobiont and as a set of functions; (ii) to consider simultaneously, without looking at what comes first, the physiological or pathogenic disorders; and (iii) to define pragmatic strategies, including preventive and curative agronomical practices based on microbiota engineering.


Assuntos
Microbiota , Carbono , Nitrogênio , Plantas , Rizosfera , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...