Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 14, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252361

RESUMO

The concentration of cell-type specific extracellular vesicles (EVs) is a promising biomarker for various diseases. However, concentrations of EVs measured by optical techniques such as flow cytometry (FCM) or particle tracking analysis (PTA)  in clinical practice are incomparable. To allow reliable and comparable concentration measurements suitable reference materials (RMs) and SI-traceable (SI-International system of units) methods are required. Hollow organosilica beads (HOBs) are promising RM candidates for concentration measurements of EVs based on light scattering, as the shape, low refractive index, and number concentration of HOBs are comparable to EVs of the respective size range that can be detected with current optical instrumentation. Here, we present traceable methods for measuring the particle size distribution of four HOB types in the size range between 200 and 500 nm by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), as well as the number concentration by single-particle inductively coupled plasma mass spectrometry (spICP-MS). Based on the size and shape results, traceable reference values were obtained to additionally determine the refractive index of the shell of the HOB samples by FCM. Furthermore, the estimated refractive indexes of the HOBs plausibly agree with the refractive indexes of EVs of corresponding size. Due to their narrow size distribution and their similar shape, and low refractive index, all HOB samples studied are suitable RM candidates for calibration of the measured sample volume by optical methods within the photon wavelength range used, and thus for calibration of number concentration measurements of EVs in the size range indicated. This was confirmed as the number concentration values obtained by PTA and two independent flow cytometric measurements agreed with the concentration reference values obtained by two independent spICP-MS measurements within the calculated uncertainty limits.

2.
Res Pract Thromb Haemost ; 7(4): 100181, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37538497

RESUMO

Background: Extracellular vesicles (EVs) in body fluids are explored as disease biomarkers, but EV concentrations measured by flow cytometers (FCMs) are incomparable. Objectives: To improve data comparability, new reference materials with physical properties resembling EVs and reference procedures are being developed. The validation of new reference materials and procedures requires biological test samples. We developed a human plasma EV test sample (PEVTES) that i) resembles subcellular particles in plasma, ii) is ready-to-use, iii) is flow cytometry-compatible, and iv) is stable. Methods: The PEVTES was prepared from human plasma of 3 fasting donors. EVs were immunofluorescently stained with antibodies against platelet-specific (CD61) and erythrocyte-specific (CD235a) antigens or lactadherin. To reduce the concentration of soluble proteins, lipoproteins, and unbound reagents, stained EVs were isolated from plasma by size-exclusion chromatography. After isolation, the PEVTES was filtered to remove remnant platelets. PEVTESs were diluted in cryopreservation agents, dimethyl sulfoxide, glycerol, or trehalose and stored at -80 °C for 12 months. After thawing, stained EV concentrations were measured with a calibrated FCM (Apogee A60-Micro). Results: We demonstrate that the developed PEVTES resembles subcellular particles in human plasma when measured using FCM and that the concentrations of prestained platelet-derived, erythrocyte-derived, and lactadherin+ EVs in the PEVTES are stable during storage at -80 °C for 12 months when stored in trehalose. Conclusion: The PEVTES i) resembles subcellular particles in plasma, ii) is ready-to-use, iii) is flow cytometry-compatible, and iv) is stable. Therefore, the developed PEVTES is an ideal candidate to validate newly developed reference materials and procedures.

3.
J Thromb Haemost ; 21(8): 2032-2044, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201724

RESUMO

Concentrations of extracellular vesicles (EVs) in body fluids are being explored as disease biomarkers. Most laboratories use flow cytometry to characterize single EVs at high throughput. A flow cytometer (FCM) detects light scattering and fluorescence intensities of EVs. However, detection of EVs by flow cytometry is complicated for 2 reasons. First, EVs are small and have weak light scattering and fluorescence signals compared to cells and are, therefore, hard to detect. Second, FCMs differ in sensitivity and provide data in arbitrary units, which complicates data interpretation. Due to the mentioned challenges, the measured concentration of EVs by flow cytometry is cumbersome to compare between FCMs and institutes. To improve comparability, standardization and development of traceable reference materials to calibrate all aspects of an FCM are needed, as are interlaboratory comparison studies. Within this article, we will provide an overview of the standardization of EV concentration measurements, including the current effort to introduce robust calibration of FCMs, thereby enabling comparable concentration measurements of EVs, which in turn can be used to establish clinically relevant reference ranges of EV concentrations in blood plasma and other body fluids.


Assuntos
Vesículas Extracelulares , Humanos , Citometria de Fluxo , Plasma , Calibragem , Padrões de Referência
4.
J Extracell Vesicles ; 12(2): e12302, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36788785

RESUMO

Human blood plasma prepared by centrifugation contains not only extracellular vesicles (EVs) but also platelets and erythrocyte ghosts (ery-ghosts). Here we studied whether analysis of miRNA associated with plasma EVs (EV-miRNA) is affected by the presence of platelets and ery-ghosts. EDTA blood was collected from healthy donors (n = 3), and plasma was prepared by the centrifugation protocol recommended by the International Society on Thrombosis and Haemostasis (ISTH), and by a centrifugation protocol from an EV-miRNA expert lab (non-ISTH protocol). EVs were isolated from plasma by size-exclusion chromatography CL-2B (SEC2B), and concentrations of platelets, activated platelets, ery-ghosts and EVs (150-1000 nm) were measured by calibrated flow cytometry. Two EV-associated miRNAs (let7a-5p and miR-21-5p), and one platelet-associated miRNA (miR-223-3p), were measured by qRT-PCR. Measurements were performed with and without filtration using 0.8 µm track-etched filters to remove platelets and ery-ghosts from plasma and EV-enriched SEC fractions. Plasma prepared by both centrifugation protocols contained platelets and ery-ghosts, which co-migrated with EVs into the EV-enriched SEC2B fractions. Filtration removed platelets and ery-ghosts (>97%; p ≤ 0.05) and did not affect the EV concentrations (p > 0.17). The miRNA concentrations were 2-4-fold overestimated due to the presence of platelets but not ery-ghosts. Thus, filtration of human plasma is expected to improve comparability and reproducibility of quantitative EV-miRNA studies. Therefore, we recommend to measure and report the plasma concentration of platelets for EV-miRNA studies, and to filter plasma before downstream analyses or storage in biobanks.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , Reprodutibilidade dos Testes , Plaquetas , Plasma
5.
J Thromb Haemost ; 20(11): 2679-2685, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043239

RESUMO

BACKGROUND: Blood plasma is commonly used for biomarker research of extracellular vesicles (EVs). Removing all cells prior to analysis of EVs is essential. OBJECTIVES: We therefore studied the efficacy of the most commonly used centrifugation protocol to prepare cell-free plasma. METHODS: Plasma was prepared according to the double centrifugation protocol of the International Society on Thrombosis and Haemostasis (ISTH) in three independent studies. The concentrations of platelets, platelet-derived EVs, and erythrocyte-derived EVs were measured by calibrated flow cytometry. RESULTS: The mean platelet concentration ranged from 5.1 × 105 /ml to 2.8 × 107 /ml and differed 55-fold between studies. Thus, the ISTH centrifugation protocol does not remove all platelets and results in variation between studies. As the concentration of platelet-derived EVs and platelets correlates linearly (R2  = .56), and the volume fraction of EVs and platelets in plasma are similar, the presence of platelets affects downstream analysis. To remove platelets a 0.8-µm polycarbonate filter was used to lower the platelet concentration 146-fold (p = .0013), without affecting the concentration of platelet-derived and erythrocyte-derived EVs (p = .982, p = .742). CONCLUSIONS: To improve the quality of EV research, we recommend (1) measuring and reporting the platelet concentration in plasma used for EV research, or (2) removing platelets by centrifugation followed by filtration.


Assuntos
Vesículas Extracelulares , Trombose , Humanos , Plaquetas , Plasma , Citometria de Fluxo/métodos , Biomarcadores
6.
J Extracell Vesicles ; 9(1): 1816641, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33062218

RESUMO

Accurate characterization of extracellular vesicles (EVs) is critical to explore their diagnostic and therapeutic applications. As the EV research field has developed, so too have the techniques used to characterize them. The development of reference materials are required for the standardization of these techniques. This work, initiated from the ISEV 2017 Biomarker Workshop in Birmingham, UK, and with further discussion during the ISEV 2019 Standardization Workshop in Ghent, Belgium, sets out to elucidate which reference materials are required and which are currently available to standardize commonly used analysis platforms for characterizing EV refractive index, epitope abundance, size and concentration. Due to their predominant use among EV researchers, a particular focus is placed on the optical methods nanoparticle tracking analysis and flow cytometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...