Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4978, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862537

RESUMO

The electrical outputs of single-layer antiferromagnetic memory devices relying on the anisotropic magnetoresistance effect are typically rather small at room temperature. Here we report a new type of antiferromagnetic memory based on the spin phase change in a Mn-Ir binary intermetallic thin film at a composition within the phase boundary between its collinear and noncollinear phases. Via a small piezoelectric strain, the spin structure of this composition-boundary metal is reversibly interconverted, leading to a large nonvolatile room-temperature resistance modulation that is two orders of magnitude greater than the anisotropic magnetoresistance effect for a metal, mimicking the well-established phase change memory from a quantum spin degree of freedom. In addition, this antiferromagnetic spin phase change memory exhibits remarkable time and temperature stabilities, and is robust in a magnetic field high up to 60 T.

2.
J Phys Chem Lett ; 15(21): 5689-5695, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38767955

RESUMO

Lead-chloride perovskites are promising candidates for optoelectronic applications, such as visible-blind UV photodetection. It remains unclear how the deep defects in this wide-bandgap material impact the carrier recombination dynamics. In this work, we study the defect properties of MAPbCl3 (MA = CH3NH3) based on photoluminescence (PL) measurements. Our investigations show that apart from the intrinsic emission, four sub-bandgap emissions emerge, which are very likely to originate from the radiative recombination of excitons bound to several intrinsic vacancy and interstitial defects. The intensity of various emission features can be tuned by adjusting the type and ratio of precursors used during synthesis. Our study not only provides important insights into the defect property and carrier recombination mechanism in this class of material but also demonstrates efficient strategies for defect passivation and engineering, paving the way for further development of lead-chloride perovskite-based optoelectronic devices.

3.
Appl Phys Lett ; 124(5): 053702, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38313557

RESUMO

Visualizing micro- and nano-scale biological entities requires high-resolution imaging and is conventionally achieved via optical microscopic techniques. Optical diffraction limits their resolution to ∼200 nm. This limit can be overcome by using ions with ∼1 MeV energy. Such ions penetrate through several micrometers in tissues, and their much shorter de Broglie wavelengths indicate that these ion beams can be focused to much shorter scales and hence can potentially facilitate higher resolution as compared to the optical techniques. Proton microscopy with ∼1 MeV protons has been shown to have reasonable inherent contrast between sub-cellular organelles. However, being a transmission-based modality, it is unsuitable for in vivo studies and cannot facilitate three-dimensional imaging from a single raster scan. Here, we propose proton-induced acoustic microscopy (PrAM), a technique based on pulsed proton irradiation and proton-induced acoustic signal collection. This technique is capable of label-free, super-resolution, 3D imaging with a single raster scan. Converting radiation energy into ultrasound enables PrAM with reflection mode detection, making it suitable for in vivo imaging and probing deeper than proton scanning transmission ion microscopy (STIM). Using a proton STIM image of HeLa cells, a coupled Monte Carlo+k-wave simulations-based feasibility study has been performed to demonstrate the capabilities of PrAM. We demonstrate that sub-50 nm lateral (depending upon the beam size and energy) and sub-micron axial resolution (based on acoustic detection bandwidth and proton beam pulse width) can be obtained using the proposed modality. By enabling visualization of biological phenomena at cellular and subcellular levels, this high-resolution microscopic technique enhances understanding of intricate cellular processes.

4.
Nat Mater ; 23(6): 803-809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191632

RESUMO

High-sensitivity radiation detectors for energetic particles are essential for advanced applications in particle physics, astronomy and cancer therapy. Current particle detectors use bulk crystals, and thin-film organic scintillators have low light yields and limited radiation tolerance. Here we present transmissive thin scintillators made from CsPbBr3 nanocrystals, designed for real-time single-proton counting. These perovskite scintillators exhibit exceptional sensitivity, with a high light yield (~100,000 photons per MeV) when subjected to proton beams. This enhanced sensitivity is attributed to radiative emission from biexcitons generated through proton-induced upconversion and impact ionization. These scintillators can detect as few as seven protons per second, a sensitivity level far below the rates encountered in clinical settings. The combination of rapid response (~336 ps) and pronounced ionostability enables diverse applications, including single-proton tracing, patterned irradiation and super-resolution proton imaging. These advancements have the potential to improve proton dosimetry in proton therapy and radiography.

5.
Nano Lett ; 23(16): 7267-7272, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37530499

RESUMO

Barium titanate-on-insulator has demonstrated excellent vertical optical confinement, low loss, and strong electro-optic properties. To fabricate a waveguide-based device, a region of higher refractive index must be created to confine a propagating mode, one way of which is through dry etching to form a ridge. However, despite recent progress achieved in etching barium titanate and similar materials, the sidewall and surface roughness resulting from the physical etching typically used limit the achievable ridge depth. This motivates the exploration of etch-free methods to achieve the required index contrast. Here, we introduce three etch-free methods to create a refractive index contrast in barium titanate-on-insulator, including a metal diffusion method, proton beam irradiation method, and crystallinity control method. Notably, molybdenum-diffused barium titanate leads to a large index change of up to 0.17. The methods provided in this work can be further developed to fabricate various on-chip barium titanate optical waveguide-based devices.

6.
Nano Lett ; 23(13): 6209-6215, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364230

RESUMO

Spin defects existing in van der Waals materials attract wide attention thanks to their natural advantages for in situ quantum sensing, especially the negatively charged boron vacancy (VB-) centers in hexagonal boron nitride (h-BN). Here we systematically investigate the laser and microwave power broadening in continuous-wave optically detected magnetic resonance (ODMR) of the VB- ensemble in h-BN, by revealing the behaviors of ODMR contrast and line width as a function of the laser and microwave powers. The experimental results are well explained by employing a two-level simplified model of ODMR dynamics. Furthermore, with optimized power, the DC magnetic field sensitivity of VB- ensemble is significantly improved up to 2.87 ± 0.07 µT/Hz. Our results provide important suggestions for further applications of VB- centers in quantum information processing and ODMR-based quantum sensing.

7.
Nano Lett ; 23(10): 4456-4463, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37132635

RESUMO

Two-dimensional (2D) semiconductors with point defects are predicted to host a variety of bound exciton complexes analogous to trions and biexcitons due to strong many-body effects. However, despite the common observation of defect-mediated subgap emission, the existence of such complexes remains elusive. Here, we report the observation of bound exciton (BX) complex manifolds in monolayer MoSe2 with intentionally created monoselenium vacancies (VSe) using proton beam irradiation. The emission intensity of different BX peaks is found to exhibit contrasting dependence on electrostatic doping near the onset of free electron injection. The observed trend is consistent with the model in which free excitons exist in equilibrium with excitons bound to neutral and charged VSe defects, which act as deep acceptors. These complexes are more strongly bound than trions and biexcitons, surviving up to around 180 K, and exhibit moderate valley polarization memory, indicating partial free exciton character.

8.
Nat Commun ; 12(1): 4657, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341359

RESUMO

Correlative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles. We demonstrate that fluorescent nanodiamonds exhibit fast, ultrabright and stable emission upon excitation by alpha particles. Thus, by using fluorescent nanodiamonds as imaging probes, our approach enables quantification and correlative localization of single nanodiamonds within a whole cell at sub-30 nm resolution. As an application example, we show that our approach, together with Monte Carlo simulations and radiobiological experiments, can be employed to provide unique insights into the mechanisms of nanodiamond radiosensitization at the single whole-cell level. These findings may benefit clinical studies of radio-enhancement effects by nanoparticles in charged-particle cancer therapy.


Assuntos
Partículas alfa , Núcleo Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Histonas/metabolismo , Nanodiamantes/efeitos da radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HeLa , Células Hep G2 , Humanos , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Nanodiamantes/química , Nanodiamantes/ultraestrutura , Fosforilação/efeitos da radiação
9.
ACS Appl Mater Interfaces ; 11(46): 43708-43718, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31642311

RESUMO

Gas-induced growth of organic-inorganic hybrid perovskites, especially methylammonium lead iodide (MAPbI3), has shown interesting properties and applications in the area of optoelectronics. In this report, we introduce a method of gas-induced band gap engineering of thin films of MAPbI3 due to systematic dimensional confinement-deconfinement along the crystallographic c axis of growing MAPbI3. Interestingly, such a restricted growth phenomenon was observed when the hexylammonium lead iodide (two-dimensional hybrid perovskite) film was exposed to methylamine gas instead of the conventional PbI2 film-methylamine gas precursor pair. Hexylamine, formed due to the cation exchange reaction, interacts selectively with the Pb centers of growing MAPbI3 crystals, and this induces an enormous restriction in the growth of MAPbI3 along the crystallographic c direction, leading to a unique sheet-type MAPbI3 film having a much higher band gap (2.18 eV) compared to conventional bulk MAPbI3. However, careful control of exposure timing gradually evaporates the hexylamine, leading to systematic dimensional deconfinement, enabling modulation of the band gap from 2.18 to 1.69 eV. An interplay of adsorption and desorption of hexylamine is also utilized for generating patterns of two different fluorescent hybrid perovskite materials in a single pixel. This new mechanistic investigation highlighting gas-induced interplay of dimensional confinement-deconfinement associated with band gap tuning provides smooth thin films, which can be used to develop optoelectronic devices.

10.
Opt Lett ; 43(11): 2648-2651, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856384

RESUMO

Ion-implanted waveguides were directly written in bulk single-crystal diamond by scanning a focused 2 MeV proton beam. By controlling the fluence and the lateral size of the proton beam, a bright and near-circular single-mode profile was observed. Propagation loss and effective refractive index of the guided mode were measured by the Fabry-Pérot technique, confirming single-mode guiding. Micro-Raman maps of the waveguides were used to visualize damage profiles and defect distributions induced by the proton beam. The demonstration of single-mode light guiding in our waveguides shows that direct proton beam writing is a promising tool in the rapid manufacture of integrated optical circuits in bulk diamond.

11.
Phys Rev E ; 97(3-1): 032403, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776024

RESUMO

We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.


Assuntos
DNA/química , Elétrons , Modelos Moleculares , Compostos Orgânicos/química
12.
Opt Express ; 26(4): 4421-4430, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475292

RESUMO

Lithium niobate's use in integrated optics is somewhat hampered by the lack of a capability to create low loss waveguides with strong lateral index confinement. Thin film single crystal lithium niobate is a promising platform for future applications in integrated optics due to the availability of a strong electro-optic effect in this material coupled with the possibility of strong vertical index confinement. However, sidewalls of etched waveguides are typically rough in most etching procedures, exacerbating propagation losses. In this paper, we propose a fabrication method that creates significantly smoother ridge waveguides. This involves argon ion milling and subsequent gas clustered ion beam smoothening. We have fabricated and characterized ultra-low loss waveguides with this technique, with propagation losses as low as 0.3 dB/cm at 1.55 µm.

13.
ACS Nano ; 11(12): 12632-12640, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29091397

RESUMO

Techniques to analyze human telomeres are imperative in studying the molecular mechanism of aging and related diseases. Two important aspects of telomeres are their length in DNA base pairs (bps) and their biophysical nanometer dimensions. However, there are currently no techniques that can simultaneously measure these quantities in individual cell nuclei. Here, we develop and evaluate a telomere "dual" gold nanoparticle-fluorescent probe simultaneously compatible with both X-ray fluorescence (XRF) and super resolution microscopy. We used silver enhancement to independently visualize the spatial locations of gold nanoparticles inside the nuclei, comparing to a standard QFISH (quantitative fluorescence in situ hybridization) probe, and showed good specificity at ∼90%. For sensitivity, we calculated telomere length based on a DNA/gold binding ratio using XRF and compared to quantitative polymerase chain reaction (qPCR) measurements. The sensitivity was low (∼10%), probably because of steric interference prohibiting the relatively large 10 nm gold nanoparticles access to DNA space. We then measured the biophysical characteristics of individual telomeres using super resolution microscopy. Telomeres that have an average length of ∼10 kbps, have diameters ranging between ∼60-300 nm. Further, we treated cells with a telomere-shortening drug and showed there was a small but significant difference in telomere diameter in drug-treated vs control cells. We discuss our results in relation to the current debate surrounding telomere compaction.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , Telômero/química , Células Cultivadas , Células HEK293 , Humanos , Microscopia de Fluorescência , Imagem Óptica , Raios X
14.
Sci Rep ; 7(1): 7842, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798295

RESUMO

Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

15.
Opt Lett ; 42(11): 2106-2109, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569856

RESUMO

Dark mode in metamaterials has become a vital component in determining the merit of the Fano type of interference in the system. Its strength dictates the enhancement and suppression in the amplitude and Q-factors of resulting resonance features. In this work, we experimentally probe the effect of strong near-field coupling on the strength of the dark mode in a concentrically aligned bright resonator and a dark split ring resonator (SRR) system exhibiting the classical analog of the electromagnetically induced transparency effect. An enhanced strong magnetic field between the bright-dark resonators destructively interferes with the inherent magnetic field of the dark mode to completely annihilate its effect in the coupled system. Moreover, the observed annihilation effect in the dark mode has a direct consequence on the disappearance of the SRR effect in the proposed system, wherein under the strong magnetic interactions, the LC resonance feature of the split ring resonator becomes invisible to the incident terahertz wave.

16.
Opt Express ; 24(11): 11987-93, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410120

RESUMO

We report on the development of Germanium-on-SOI waveguides for mid-infrared wavelengths. The strip waveguides have been formed in 0.85 and 2 µm thick Ge grown on SOI substrate with 220 nm thick Si overlayer. The propagation loss for various waveguide widths has been measured using the Fabry-Perot method with temperature tuning. The minimum loss of ~8 dB/cm has been achieved for 0.85 µm thick Ge core using 3.682 µm laser excitation. The transparency of these waveguides has been measured up to at least 3.82 µm.

17.
Biosens Bioelectron ; 77: 428-34, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26452079

RESUMO

The nematode Caenorhabditis elegans has become an essential model organism in neuroscience research because of its stereotyped anatomy, relevance to human biology, and capacity for genetic manipulation. To solve the intrinsic challenges associated with performing manual operations on C. elegans, many automated chip designs based on immobilization-imaging-release approaches have been proposed. These designs are prone to limitations such as the exertion of physical stress on the worms and limited throughput. In this work, a continuous-flow, high-throughput, automated C. elegans analyzer based on droplet encapsulation and real-time image processing was developed to analyze fluorescence expression in worms. To demonstrate its capabilities, two strains of C. elegans nematodes with different levels of expression of green fluorescent protein (GFP) were first mixed in a buffer solution. The worms were encapsulated in water-in-oil droplets to restrict random locomotion. The droplets were closely packed in a two-layer polydimethylsiloxane (PDMS) platform and were flowed through a narrow straight channel, in which a region of interest (ROI) was defined and continuously recorded by a frame acquisition device. Based on the number of pixels counted in the selected color range, our custom software analyzed GFP expression to differentiate between two strains with nearly 100% accuracy and a throughput of 0.5 seconds/worm.


Assuntos
Caenorhabditis elegans/metabolismo , Separação Celular/instrumentação , Citometria de Fluxo/instrumentação , Dispositivos Lab-On-A-Chip , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Perfilação da Expressão Gênica/instrumentação
18.
Nat Commun ; 6: 8832, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26560858

RESUMO

The combination of an optical microscope and a luminescent probe plays a pivotal role in biological imaging because it allows for probing subcellular structures. However, the optical resolutions are largely constrained by Abbe's diffraction limit, and the common dye probes often suffer from photobleaching. Here we present a new method for subwavelength imaging by combining lanthanide-doped upconversion nanocrystals with the ionoluminescence imaging technique. We experimentally observed that the ion beam can be used as a new form of excitation source to induce photon upconversion in lanthanide-doped nanocrystals. This approach enables luminescence imaging and simultaneous mapping of cellular structures with a spatial resolution of sub-30 nm.

19.
Opt Express ; 23(11): 14612-7, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072821

RESUMO

We report on an optical amplifier based on a Nd:YAG channel waveguide, which was fabricated by proton beam writing. Under the pumping of a continuous wave laser, the high-gain optical amplifications at single wavelength of 1064 nm and wavelength band of 1300 nm -1360 nm were obtained. The maximum gain was 24 dB/cm at 1064 nm and 6 dB/cm at 1319 nm, respectively. This work paves a way to apply proton beam written Nd:YAG waveguides as integrated optical amplifiers for the efficient amplification.

20.
Lab Chip ; 14(20): 4000-6, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25140819

RESUMO

We present a high-throughput continuous-flow C. elegans sorting device that works based on integrated optical fiber detection and laminar flow switching. Two types of genetically engineered nematodes are allowed to flow into the device and their genotypes are detected based on their fluorescence, without the need for immobilization, by integrated optical fibers. A novel dynamic fluidic switch sorts the nematodes to desired outlets. By changing input pressures of the control inlets, the laminar flow path is altered to steer the nematodes to appropriate outlets. Compared to previously reported microfluidic C. elegans sorting devices, sorting in this system is conducted in a continuous flow environment without any immobilization technique or need for multilayer mechanical valves to open and close the outlets. The continuous flow sorter not only increases the throughput but also avoids any kind of invasive or possibly damaging mechanical or chemical stimulus. We have characterized both the detection and the switching accuracy of the sorting device at different flow rates, and efficiencies approaching 100% can be achieved with a high throughput of about one nematode per second. To confirm that there was no significant damage to C. elegans following sorting, we recovered the sorted worms, finding no deaths and no differences in behavior and propagation compared to control.


Assuntos
Caenorhabditis elegans/isolamento & purificação , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas , Fibras Ópticas , Animais , Automação , Ensaios de Triagem em Larga Escala/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...