Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(7): 076901, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656841

RESUMO

We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe_{4})_{2}I following ultrafast infrared photoexcitation. From the time-dependent diffraction signal at the CDW sidebands we identify a 0.11 THz amplitude mode derived primarily from a transverse acoustic mode of the high-symmetry structure. From our measurements we determine that this mode interacts with the valence charge indirectly through another collective mode, and that the CDW system in (TaSe_{4})_{2}I has a composite nature supporting multiple dynamically active structural degrees of freedom.

2.
Inorg Chem ; 62(7): 3067-3074, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36758187

RESUMO

The discovery of new low-dimensional transition-metal chalcogenides is contributing to the already prosperous family of these materials. In this study, needle-shaped single crystals of a quasi-one-dimensional (1D) material, (Nb4Se15I2)I2, were grown by chemical vapor transport, and the structure was solved by single-crystal X-ray diffraction (XRD). The structure has 1D (Nb4Se15I2)n chains along the [101] direction, with two I- ions per formula unit directly bonded to Nb5+. The other two I- ions are loosely coordinated and intercalated between the chains. Individual chains are chiral and stack along the b axis in opposing directions, giving space group P21/c. The phase purity and crystal structure were verified by powder XRD. Density functional theory calculations show (Nb4Se15I2)I2 to be a semiconductor with a direct band gap of around 0.6 eV. Resistivity measurements of bulk crystals and micropatterned devices demonstrate that (Nb4Se15I2)I2 has an activation energy of around 0.1 eV, and no anomaly or transition was seen upon cooling. Low-temperature XRD shows that (Nb4Se15I2)I2 does not undergo a structural phase transformation from room temperature to 8.2 K, unlike related compounds (NbSe4)nI (n = 2, 3, or 3.33), which all exhibit charge-density waves. This compound represents a well-characterized and valence-precise member of a diverse family of anisotropic transition-metal chalcogenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA