Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 35(1): 7-21, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990364

RESUMO

SIGNIFICANCE STATEMENT: In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND: Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS: We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS: An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and ß2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS: Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.


Assuntos
Acidose Tubular Renal , Alcalose , Túbulos Renais Coletores , ATPases Vacuolares Próton-Translocadoras , Humanos , Masculino , Camundongos , Animais , Acidose Tubular Renal/genética , Furosemida/farmacologia , Aquaporina 2/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rim/metabolismo , Alcalose/metabolismo , Transportadores de Sulfato/metabolismo , Isoformas de Proteínas , Álcalis , Túbulos Renais Coletores/metabolismo
2.
J Endocrinol ; 259(1)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439399

RESUMO

Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Lâmina de Crescimento , Animais , Camundongos , Osso e Ossos/metabolismo , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/metabolismo , Fosfatos
3.
Pflugers Arch ; 475(2): 203-216, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36274099

RESUMO

The concentration of inorganic phosphate (Pi) in plasma is under hormonal control, with deviations from normal values promptly corrected to avoid hyper- or hypophosphatemia. Major regulators include parathyroid hormone (PTH), fibroblast growth factor 23 (FGF-23), and active vitamin D3 (calcitriol). This control is achieved by mechanisms largely dependent on regulating intestinal absorption and renal excretion, whose combined actions stabilise plasma Pi levels at around 1-2 mM. Instead, Pi concentrations up to 13 and 40 mM have been measured in saliva from humans and ruminants, respectively, suggesting that salivary glands have the capacity to concentrate Pi. Here we analysed the transcriptome of parotid glands, ileum, and kidneys of mice, to investigate their potential differences regarding the expression of genes responsible for epithelial transport of Pi as well as their known regulators. Given that Pi and Ca2+ homeostasis are tightly connected, the expression of genes involved in Ca2+ homeostasis was also included. In addition, we studied the effect of vitamin D3 treatment on the expression of Pi and Ca2+ regulating genes in the three major salivary glands. We found that parotid glands are equipped preferentially with Slc20 rather than with Slc34 Na+/Pi cotransporters, are suited to transport Ca2+ through the transcellular and paracellular route and are potential targets for PTH and vitamin D3 regulation.


Assuntos
Cálcio , Fosfatos , Humanos , Animais , Camundongos , Cálcio/metabolismo , Fosfatos/metabolismo , Glândula Parótida/metabolismo , Calcitriol/farmacologia , Hormônio Paratireóideo/metabolismo , Proteínas de Membrana Transportadoras , Fatores de Crescimento de Fibroblastos/metabolismo
4.
Sci Rep ; 12(1): 6102, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414099

RESUMO

Kidneys are key regulators of phosphate homeostasis. Biallelic mutations of the renal Na+/phosphate cotransporter SLC34A1/NaPi-IIa cause idiopathic infantile hypercalcemia, whereas monoallelic mutations were frequently noted in adults with kidney stones. Genome-wide-association studies identified SLC34A1 as a risk locus for chronic kidney disease. Pathogenic mutations in SLC34A1 are present in 4% of the general population. Here, we characterize a mouse model carrying the 91del7 in-frame deletion, a frequent mutation whose significance remains unclear. Under normal dietary conditions, 12 weeks old heterozygous and homozygous males have similar plasma and urinary levels of phosphate as their wild type (WT) littermates, and comparable concentrations of parathyroid hormone, fibroblast growth factor 23 (FGF-23) and 1,25(OH)2 vitamin D3. Renal phosphate transport, and expression of NaPi-IIa and NaPi-IIc cotransporters, was indistinguishable in the three genotypes. Challenging mice with low dietary phosphate did not result in differences between genotypes with regard to urinary and plasma phosphate. Urinary and plasma phosphate, plasma FGF-23 and expression of cotransporters were similar in all genotypes after weaning. Urinary phosphate and bone mineral density were also comparable in 300 days old WT and mutant mice. In conclusion, mice carrying the 91del7 truncation do not show signs of impaired phosphate homeostasis.


Assuntos
Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Minerais/metabolismo , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
5.
Acta Physiol (Oxf) ; 235(2): e13815, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35334154

RESUMO

AIMS: Dietary inorganic phosphate (Pi) modulates renal Pi reabsorption by regulating the expression of the NaPi-IIa and NaPi-IIc Pi transporters. Here, we aimed to clarify the role of several Pi-regulatory mechanisms including parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) and inositol hexakisphosphate kinases (IP6-kinases) in the acute regulation of NaPi-IIa and NaPi-IIc. METHODS: Wildtype (WT) and PTH-deficient mice (PTH-KO) with/without inhibition of FGF23 signalling were gavaged with Pi/saline and examined at 1, 4 and 12 h. RESULTS: Pi-gavage elevated plasma Pi and decreased plasma Ca2+ in both genotypes after 1 h Within 1 h, Pi-gavage decreased NaPi-IIa abundance in WT and PTH-KO mice. NaPi-IIc was downregulated 1 h post-administration in WT and after 4 h in PTH-KO. PTH increased after 1 h in WT animals. After 4 h Pi-gavage, FGF23 increased in both genotypes being higher in the KO group. PTHrp and dopamine were not altered by Pi-gavage. Blocking FGF23 signalling blunted PTH upregulation in WT mice and reduced NaPi-IIa downregulation in PTH-KO mice 4 h after Pi-gavage. Inhibition of IP6-kinases had no effect. CONCLUSIONS: (1) Acute downregulation of renal Pi transporters in response to Pi intake occurs also in the absence of PTH and FGF23 signalling, (2) when FGF23 signalling is blocked, a partial contribution of PTH is revealed, (3) IP6 kinases, intracellular Pi-sensors in yeast and bacteria, are not involved, and (4) Acute Pi does not alter PTHrp and dopamine. Thus, signals other than PTH, PTHrp, FGF23 and dopamine contribute to renal adaption.


Assuntos
Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Animais , Dopamina/metabolismo , Fatores de Crescimento de Fibroblastos , Rim/metabolismo , Camundongos , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
6.
Kidney Blood Press Res ; 46(6): 714-722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34515136

RESUMO

INTRODUCTION: Phosphate homeostasis is regulated by a complex network involving the parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and calcitriol acting on several organs including the kidney, intestine, bone, and parathyroid gland. Previously, we showed that activation of the Janus kinase 1 (Jak1)-signal transducer and activator of transcription 3 (Stat3) signaling pathway leads to altered mineral metabolism with higher FGF23 levels, lower PTH, and higher calcitriol levels. Here, we investigated if there are sex differences in the role of Jak1/Stat3 signaling pathway on phosphate metabolism and if this pathway is sensitive to extracellular phosphate alterations. METHODS: We used a mouse model (Jak1S645P+/-) that resembles a constitutive activating mutation of the Jak1/Stat3 signaling pathway in humans and analyzed the impact of sex on mineral metabolism parameters. Furthermore, we challenged Jak1S645P+/- male and female mice with a high (1.2% w/w) and low (0.1% w/w) phosphate diet and a diet with phosphate with organic origin with lower bioavailability. RESULTS: Female mice, as male mice, showed higher intact FGF23 levels but no phosphaturia, and higher calcitriol and lower PTH levels in plasma. A phosphate challenge did not alter the effect of Jak1/Stat3 activation on phosphate metabolism for both genders. However, under a low phosphate diet or a diet with lower phosphate availability, the animals showed a tendency to develop hypophosphatemia. Moreover, male and female mice showed similar phosphate metabolism parameters. The only exception was higher PTH levels in male mice than those in females. DISCUSSION/CONCLUSION: Sex and extracellular phosphate levels do not affect the impact of Jak1/Stat3 activation on phosphate metabolism.


Assuntos
Janus Quinase 1/metabolismo , Fosfatos/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Ativação Enzimática , Espaço Extracelular/metabolismo , Feminino , Masculino , Camundongos , Caracteres Sexuais
7.
FASEB J ; 35(7): e21721, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118090

RESUMO

Mineral homeostasis is regulated by a complex network involving endocrine actions by calcitriol, parathyroid hormone (PTH), and FGF23 on several organs including kidney, intestine, and bone. Alterations of mineral homeostasis are found in chronic kidney disease and other systemic disorders. The interplay between the immune system and the skeletal system is not fully understood, but cytokines play a major role in modulating calcitriol production and function. One of the main cellular signaling pathways mediating cytokine function is the Janus kinase (JAK)--signal transducer and activator of transcription (STAT) pathway. Here, we used a mouse model (Jak1S645P+/- ) that resembles a constitutive activating mutation of the Jak1/Stat3 signaling pathway in humans, and shows altered mineral metabolism, with higher fibroblast growth factor 23 (FGF23) levels, lower PTH levels, and higher calcitriol levels. The higher calcitriol levels are probably due to extrarenal calcitriol production. Furthermore, systemic Jak1/Stat3 activation led to growth impairment and skeletal alterations. The growth plate in long bones showed decreased chondrocyte proliferation rates and reduced height of terminal chondrocytes. Furthermore, we demonstrate that Jak1 is also involved in bone remodeling early in life. Jak1S645P+/- animals have decreased bone and cortical volume, imbalanced bone remodeling, reduced MAP kinase signaling, and local inflammation. In conclusion, Jak1 plays a major role in bone health probably both, directly and systemically by regulating mineral homeostasis. Understanding the role of this signaling pathway will contribute to a better knowledge in bone growth and in mineral physiology, and to the development of selective Jak inhibitors as osteoprotective agents.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Calcitriol/metabolismo , Transtornos do Crescimento/metabolismo , Janus Quinase 1/metabolismo , Transdução de Sinais/fisiologia , Animais , Remodelação Óssea/fisiologia , Proliferação de Células/fisiologia , Condrócitos/metabolismo , Condrócitos/fisiologia , Citocinas/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/fisiologia , Homeostase/fisiologia , Humanos , Inflamação/metabolismo , Rim/metabolismo , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutação/genética , Hormônio Paratireóideo/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
Sci Rep ; 11(1): 7943, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846411

RESUMO

Absorption of dietary phosphate (Pi) across intestinal epithelia is a regulated process mediated by transcellular and paracellular pathways. Although hyperphosphatemia is a risk factor for the development of cardiovascular disease, the amount of ingested Pi in a typical Western diet is above physiological needs. While blocking intestinal absorption has been suggested as a therapeutic approach to prevent hyperphosphatemia, a complete picture regarding the identity and regulation of the mechanism(s) responsible for intestinal absorption of Pi is missing. The Na+/Pi cotransporter NaPi-IIb is a secondary active transporter encoded by the Slc34a2 gene. This transporter has a wide tissue distribution and within the intestinal tract is located at the apical membrane of epithelial cells. Based on mouse models deficient in NaPi-IIb, this cotransporter is assumed to mediate the bulk of active intestinal absorption of Pi. However, whether or not this is also applicable to humans is unknown, since human patients with inactivating mutations in SLC34A2 have not been reported to suffer from Pi depletion. Thus, mice may not be the most appropriate experimental model for the translation of intestinal Pi handling to humans. Here, we describe the generation of a rat model with Crispr/Cas-driven constitutive depletion of Slc34a2. Slc34a2 heterozygous rats were indistinguishable from wild type animals under standard dietary conditions as well as upon 3 days feeding on low Pi. However, unlike in humans, homozygosity resulted in perinatal lethality.


Assuntos
Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal , Cálcio/sangue , Cálcio/urina , Creatinina/urina , Embrião de Mamíferos/patologia , Fezes/química , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Heterozigoto , Homozigoto , Masculino , Especificidade de Órgãos , Fosfatos/sangue , Fosfatos/metabolismo , Fosfatos/urina , Ratos , Análise de Sobrevida
9.
Artigo em Inglês | MEDLINE | ID: mdl-33515264

RESUMO

BACKGROUND: Phosphate intake has increased in the last decades due to a higher consumption of processed foods. This higher intake is detrimental for patients with chronic kidney disease, increasing mortality and cardiovascular disease risk and accelerating kidney dysfunction. Whether a chronic high phosphate diet is also detrimental for the healthy population is still under debate. METHODS: We fed healthy mature adult mice over a period of one year with either a high (1.2% w/w) or a standard (0.6% w/w) phosphate diet, and investigated the impact of a high phosphate diet on mineral homeostasis, kidney function and bone health. RESULTS: The high phosphate diet increased plasma phosphate, parathyroid hormone (PTH) and calcitriol levels, with no change in fibroblast growth factor 23 levels. Urinary phosphate, calcium and ammonium excretion were increased. Measured glomerular filtration rate was apparently unaffected, while blood urea was lower and urea clearance was higher in animals fed the high phosphate diet. No change was observed in plasma creatinine levels. Blood and urinary pH were more acidic paralleled by higher bone resorption observed in animals fed a high phosphate diet. Total and cortical bone mineral density was lower in animals fed a high phosphate diet and this effect is independent of the higher PTH levels observed. CONCLUSIONS: A chronic high phosphate intake did not cause major renal alterations, but affected negatively bone health, increasing bone resorption and decreasing bone mineral density.

10.
FASEB J ; 35(2): e21302, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33475190

RESUMO

Fibroblast growth factor 23 (FGF23) is a main regulator of mineral homeostasis. Low and high circulating FGF23 levels are associated with bone, renal, cardiovascular diseases, and increased mortality. Understanding the factors and signaling pathways affecting FGF23 levels is crucial for the management of these diseases and their complications. Here, we show that activation of the Jak1/Stat3 signaling pathway leads to inflammation in liver and to an increase in hepatic FGF23 synthesis, a key hormone in mineral metabolism. This increased synthesis leads to massive C-terminal FGF23 circulating levels, the inactive C-terminal fragment, and increased intact FGF23 levels, the active form, resulting in imbalanced production and cleavage. Liver inflammation does not lead to activation of the calcineurin-NFAT pathway, and no signs of systemic inflammation could be observed. Despite the increase of active intact FGF23, excessive C-terminal FGF23 levels block the phosphaturic activity of FGF23. Therefore, kidney function and renal αKlotho expression are normal and no activation of the MAPK pathway was detected. In addition, activation of the Jak1/Stat3 signaling pathway leads to high calcitriol levels and low parathyroid hormone production. Thus, JAK1 is a central regulator of mineral homeostasis. Moreover, this study also shows that in order to assess the impact of high FGF23 levels on disease and kidney function, the source and the balance in FGF23 production and cleavage are critical.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Janus Quinase 1/metabolismo , Fígado/imunologia , Fígado/metabolismo , Animais , Osso e Ossos/metabolismo , Linhagem Celular , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Células HEK293 , Humanos , Imunoprecipitação , Inflamação/genética , Janus Quinase 1/genética , Rim/metabolismo , Camundongos , Fator de Transcrição STAT3/metabolismo
11.
J Physiol ; 599(4): 1131-1150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33200827

RESUMO

KEY POINTS: Intestinal absorption of phosphate proceeds via an active/transcellular route mostly mediated by NaPi-IIb/Slc34a2 and a poorly characterized passive/paracellular pathway. Intestinal phosphate absorption and expression of NaPi-IIb are stimulated by 1,25(OH)2 vitamin D3 but whether NaPi-IIb is the only target under hormonal control remains unknown. We report that administration of 1,25(OH)2 vitamin D3 to wild-type mice resulted in the expected increase in active transport of phosphate in jejunum, without changing paracellular fluxes. Instead, the same treatment failed to alter phosphate transport in intestinal-depleted Slc34a2-deficient mice. In both genotypes, 1,25(OH)2 vitamin D3 induced similar hyperphosphaturic responses and changes in the plasma levels of FGF23 and PTH. While urinary phosphate loss induced by administration of 1,25(OH)2 vitamin D3 did not alter plasma phosphate, further studies should investigate whether chronic administration would lead to phosphate imbalance in mice with reduced active intestinal absorption. ABSTRACT: Intestinal absorption of phosphate is stimulated by 1,25(OH)2 vitamin D3. At least two distinct mechanisms underlie phosphate absorption in the gut, an active transcellular transport requiring the Na+ /phosphate cotransporter NaPi-IIb/Slc34a2, and a poorly characterized paracellular passive pathway. 1,25(OH)2 vitamin D3 stimulates NaPi-IIb expression and function, and loss of NaPi-IIb reduces intestinal phosphate absorption. However, it is remains unknown whether NaPi-IIb is the only target for hormonal regulation by 1,25(OH)2 vitamin D3 . Here we compared the effects of intraperitoneal administration of 1,25(OH)2 vitamin D3 (2 days, once per day) in wild-type and intestinal-specific Slc34a2-deficient mice, and analysed trans- vs. paracellular routes of phosphate absorption. We found that treatment stimulated active transport of phosphate only in jejunum of wild-type mice, though NaPi-IIb protein expression was upregulated in jejunum and ileum. In contrast, 1,25(OH)2 vitamin D3 administration had no effect in Slc34a2-deficient mice, suggesting that the hormone specifically regulates NaPi-IIb expression. In both groups, 1,25(OH)2 vitamin D3 elicited the expected increase of plasma fibroblast growth factor 23 (FGF23) and reduction of parathyroid hormone (PTH). Treatment resulted in hyperphosphaturia (and hypercalciuria) in both genotypes, though mice remained normophosphataemic. While increased intestinal absorption and higher FGF23 can trigger the hyperphosphaturic response in wild types, only higher FGF23 can explain the renal response in Slc34a2-deficient mice. Thus, 1,25(OH)2 vitamin D3 stimulates intestinal phosphate absorption by acting on the active transcellular pathway mostly mediated by NaPi-IIb while the paracellular pathway appears not to be affected.


Assuntos
Colecalciferol , Fosfatos , Animais , Transporte Biológico Ativo , Colecalciferol/farmacologia , Fator de Crescimento de Fibroblastos 23 , Absorção Intestinal , Transporte de Íons , Camundongos
12.
Pflugers Arch ; 472(8): 1079-1092, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32577861

RESUMO

Fine-tuning of salt and acid-base homeostasis is achieved in the renal collecting duct through the action of intercalated and principal cells. Their activity is tightly regulated adapting to changes in systemic acid-base, fluid, or electrolyte status. The relative number of acid or bicarbonate secretory intercalated cells changes in response to acid or alkali loading. Several factors that may induce collecting duct plasticity in response to acid loading have been identified including cell proliferation, Growth Differentiation Factor 15 (Gdf15), hensin (DMBT1), and SDF1 (or CXCL12). Also, the transcription factors Foxi1 and CP2L1, or the Notch2-Jag1 signaling pathway, may play a role. However, little is known about the mechanisms mediating the adaptive response of the collecting duct to alkali loading. Here, we examined in mouse kidney the response of these factors to alkali loading. Mice were left untreated or received NaHCO3 or NaCl over 7 days. Cell proliferation in vivo was monitored by Ki67 labeling or BrdU incorporation and expression of cell markers, and regulatory factors were examined. Foxi1 and GDF15 were upregulated and CP2L1 downregulated during alkali loading. Ki67 staining and BrdU incorporation were frequent in AQP2-positive cells in the NaCl and NaHCO3 groups, but no evidence was found for increased Ki67 or BrdU staining in bicarbonate-secretory cells consistent with a model that AQP2 positive precursor cells may differentiate into intercalated cells. Thus, alkali loading alters the cellular profile of the collecting duct, which may involve cell proliferation and changes in the network of molecules determining the plasticity of the collecting duct.


Assuntos
Álcalis/metabolismo , Túbulos Renais Coletores/metabolismo , Equilíbrio Ácido-Base/fisiologia , Animais , Bicarbonatos/metabolismo , Biomarcadores/metabolismo , Proliferação de Células/fisiologia , Regulação para Baixo/fisiologia , Homeostase/fisiologia , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Regulação para Cima/fisiologia
13.
Pflugers Arch ; 472(4): 449-460, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32219532

RESUMO

Na+-coupled phosphate cotransporters from the SLC34 and SLC20 families of solute carriers mediate transepithelial transport of inorganic phosphate (Pi). NaPi-IIa/Slc34a1, NaPi-IIc/Slc34a3, and Pit-2/Slc20a2 are all expressed at the apical membrane of renal proximal tubules and therefore contribute to renal Pi reabsorption. Unlike NaPi-IIa and NaPi-IIc, which are rather kidney-specific, NaPi-IIb/Slc34a2 is expressed in several epithelial tissues, including the intestine, lung, testis, and mammary glands. Recently, the expression of NaPi-IIb was also reported in kidneys from rats fed on high Pi. Here, we systematically quantified the mRNA expression of SLC34 and SLC20 cotransporters in kidneys from mice, rats, and humans. In all three species, NaPi-IIa mRNA was by far the most abundant renal transcript. Low and comparable mRNA levels of the other four transporters, including NaPi-IIb, were detected in kidneys from rodents and humans. In mice, the renal expression of NaPi-IIa transcripts was restricted to the cortex, whereas NaPi-IIb mRNA was observed in medullary segments. Consistently, NaPi-IIb protein colocalized with uromodulin at the luminal membrane of thick ascending limbs of the loop of Henle segments. The abundance of NaPi-IIb transcripts in kidneys from mice was neither affected by dietary Pi, the absence of renal NaPi-IIc, nor the depletion of intestinal NaPi-IIb. In contrast, it was highly upregulated in a model of oxalate-induced kidney disease where all other SLC34 phosphate transporters were downregulated. Thus, NaPi-IIb may contribute to renal phosphate reabsorption, and its upregulation in kidney disease might promote hyperphosphatemia.


Assuntos
Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Regulação para Cima , Animais , Membrana Celular/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fosfatos/metabolismo , Ratos Wistar , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
14.
Kidney Int ; 97(5): 920-933, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173037

RESUMO

Hypercalciuria is a common feature during metabolic acidosis and associates to nephrolithiasis and nephrocalcinosis. The mechanisms sensing acidosis and inducing increased urinary calcium excretion are still unknown. Here we tested whether mice deficient for proton-activated Ovarian cancer G-protein coupled receptor 1 (OGR1 or Gpr68) have reduced urinary excretion of calcium during chronic metabolic acidosis. In the kidney, OGR1 mRNA was found in cells of the glomerulus, proximal tubule, and interstitium including endothelial cells. Wild type (OGR1+/+) and OGR1 knockout (OGR1-/-) mice were given standard chow without (control) or loaded with ammonium chloride for one or seven days to induce acute or chronic metabolic acidosis, respectively. No differences in responding to the acid load were observed in the knockout mice, except for higher plasma bicarbonate after one day. Bone mineral density, resorption activity of osteoclasts, and urinary deoxypyridinoline were similar between genotypes. During metabolic acidosis the expression levels of key proteins involved in calcium reabsorption, i.e. the sodium/proton exchanger (NHE3), the epithelial calcium-selective channel TRPV5, and the vitamin D-dependent calcium binding protein calbindin-D28k were all higher in the knockout mice compared to wild type mice. This is consistent with the previous demonstration that OGR1 reduces NHE3 activity in proximal tubules of mice. Wild-type mice displayed a non-linear positive association between urinary proton and calcium excretion which was lost in the knockout mice. Thus, OGR1 is a pH sensor involved in the hypercalciuria of metabolic acidosis by controlling NHE3 activity in the proximal tubule. Hence, novel drugs modulating OGR1 activity may improve renal calcium handling.


Assuntos
Acidose , Cálcio , Receptores Acoplados a Proteínas G , Acidose/genética , Animais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP , Túbulos Renais Proximais/metabolismo , Camundongos , Camundongos Knockout , Prótons , Receptores Acoplados a Proteínas G/genética , Trocador 3 de Sódio-Hidrogênio
15.
Proc Natl Acad Sci U S A ; 117(3): 1753-1761, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896584

RESUMO

Carbon dioxide (CO2), the major product of metabolism, has a strong impact on cerebral blood vessels, a phenomenon known as cerebrovascular reactivity. Several vascular risk factors such as hypertension or diabetes dampen this response, making cerebrovascular reactivity a useful diagnostic marker for incipient vascular pathology, but its functional relevance, if any, is still unclear. Here, we found that GPR4, an endothelial H+ receptor, and endothelial Gαq/11 proteins mediate the CO2/H+ effect on cerebrovascular reactivity in mice. CO2/H+ leads to constriction of vessels in the brainstem area that controls respiration. The consequential washout of CO2, if cerebrovascular reactivity is impaired, reduces respiration. In contrast, CO2 dilates vessels in other brain areas such as the amygdala. Hence, an impaired cerebrovascular reactivity amplifies the CO2 effect on anxiety. Even at atmospheric CO2 concentrations, impaired cerebrovascular reactivity caused longer apneic episodes and more anxiety, indicating that cerebrovascular reactivity is essential for normal brain function. The site-specific reactivity of vessels to CO2 is reflected by regional differences in their gene expression and the release of vasoactive factors from endothelial cells. Our data suggest the central nervous system (CNS) endothelium as a target to treat respiratory and affective disorders associated with vascular diseases.


Assuntos
Ansiedade/metabolismo , Sistema Cardiovascular/metabolismo , Endotélio/metabolismo , Transtornos Respiratórios/metabolismo , Tonsila do Cerebelo , Animais , Arteríolas/patologia , Encéfalo/fisiologia , Tronco Encefálico/metabolismo , Dióxido de Carbono/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Endotélio/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Hipercapnia/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Respiração , Fatores de Risco , Transdução de Sinais
16.
Sci Rep ; 9(1): 14989, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628396

RESUMO

Fibroblast Growth Factor 23 (FGF23) is a phosphaturic factor causing increased renal phosphate excretion as well as suppression of 1,25 (OH)2-vitamin D3. Highly elevated FGF23 can promote development of rickets and osteomalacia. We and others previously reported that acute application of erythropoietin (EPO) stimulates FGF23 production. Considering that EPO is clinically used as chronic treatment against anemia, we used here the Tg6 mouse model that constitutively overexpresses human EPO in an oxygen-independent manner, to examine the consequences of long-term EPO therapy on mineral and bone metabolism. Six to eight weeks old female Tg6 mice showed elevated intact and C-terminal fragment of FGF23 but normal plasma levels of PTH, calcitriol, calcium and phosphate. Renal function showed moderate alterations with higher urea and creatinine clearance and mild albuminuria. Renal phosphate excretion was normal whereas mild hypercalciuria was found. Renal expression of the key proteins TRPV5 and calbindin D28k involved in active calcium reabsorption was reduced in Tg6 mice. Plasma levels of the bone turnover marker osteocalcin were comparable between groups. However, urinary excretion of deoxypyridinoline (DPD) was lower in Tg6 mice. MicroCT analysis showed reduced total, cortical, and trabecular bone mineral density in femora from Tg6 mice. Our data reveal that chronic elevation of EPO is associated with high FGF23 levels and disturbed mineral homeostasis resulting in reduced bone mineral density. These observations imply the need to study the impact of therapeutically applied EPO on bone mineralization in patients, especially those suffering from chronic kidney disease.


Assuntos
Calcificação Fisiológica/genética , Eritropoetina/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Rim/metabolismo , Minerais/metabolismo , Aminoácidos/urina , Animais , Densidade Óssea/genética , Calcitriol/sangue , Cálcio/sangue , Cálcio/urina , Eritropoetina/genética , Feminino , Fator de Crescimento de Fibroblastos 23 , Homeostase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteocalcina/sangue , Fosfatos/sangue , Fosfatos/urina , Insuficiência Renal Crônica/metabolismo
17.
Kidney Int ; 96(4): 890-905, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301888

RESUMO

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis, and its early rise in patients with chronic kidney disease is independently associated with all-cause mortality. Since inflammation is characteristic of chronic kidney disease and associates with increased plasma FGF23 we examined whether inflammation directly stimulates FGF23. In a population-based cohort, plasma tumor necrosis factor (TNF) was the only inflammatory cytokine that independently and positively correlated with plasma FGF23. Mouse models of chronic kidney disease showed signs of renal inflammation, renal FGF23 expression and elevated systemic FGF23 levels. Renal FGF23 expression coincided with expression of the orphan nuclear receptor Nurr1 regulating FGF23 in other organs. Antibody-mediated neutralization of TNF normalized plasma FGF23 and suppressed ectopic renal Fgf23 expression. Conversely, TNF administration to control mice increased plasma FGF23 without altering plasma phosphate. Moreover, in Il10-deficient mice with inflammatory bowel disease and normal kidney function, plasma FGF23 was elevated and normalized upon TNF neutralization. Thus, the inflammatory cytokine TNF contributes to elevated systemic FGF23 levels and also triggers ectopic renal Fgf23 expression in animal models of chronic kidney disease.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Doenças Inflamatórias Intestinais/imunologia , Insuficiência Renal Crônica/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Animais , Linhagem Celular , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/imunologia , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Doenças Inflamatórias Intestinais/sangue , Interleucina-10/deficiência , Interleucina-10/genética , Rim/imunologia , Rim/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Cultura Primária de Células , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/patologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
18.
J Crohns Colitis ; 13(2): 245-258, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535144

RESUMO

BACKGROUND: Tissue inflammation in inflammatory bowel diseases [IBD] is associated with local acidification. Genetic variants in the pH-sensing G protein-coupled receptor 65, also known as T cell death-associated gene 8 [TDAG8], have been implicated in IBD and other autoimmune diseases. Since the role of TDAG8 in intestinal inflammation remains unclear, we investigated the function of TDAG8 using murine colitis models. METHODS: The effects of TDAG8 deficiency were assessed in dextran sodium sulphate [DSS], IL-10-/-, and T cell transfer colitis murine models. RNA sequencing of acidosis-activated TDAG8-/- and wild-type [WT] peritoneal macrophages [MΦs] was performed. RESULTS: mRNA expression of IFN-γ, TNF, IL-6, and iNOS in TDAG8-/- mice increased significantly in colonic lymphoid patches and in colonic tissue in acute and chronic DSS colitis, respectively. In transfer colitis, there was a trend towards increased IFN-γ, iNOS, and IL-6 expression in mice receiving TDAG8-/- T cells. However, absence of TDAG8 did not lead to changes in clinical scores in the models tested. Increased numbers of infiltrating MΦs and neutrophils, but not CD3+ T cells, were observed in DSS-treated TDAG8-/- mice. No differences in infiltrating CD3+ T cells were observed between mice receiving TDAG8-/- or WT naïve T cells in transfer colitis. RNA sequencing showed that acidosis activation of TDAG8 in MΦs modulated the expression of immune response genes. CONCLUSIONS: TDAG8 deficiency triggers colonic MΦ and neutrophil infiltration, and expression of pro-inflammatory mediators in DSS colitis models. In transfer colitis, mice receiving TDAG8-/- T cells presented a significantly higher spleen weight and a tendency towards increased expression of pro-inflammatory markers of monocyte/MΦ activity.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Animais , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/patologia , Interferon gama/metabolismo , Interleucina-6 , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Pflugers Arch ; 470(10): 1569-1582, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29961920

RESUMO

Fibroblast growth factor 23 (FGF23) is a major endocrine regulator of phosphate and 1,25 (OH)2 vitamin D3 metabolism and is mainly produced by osteocytes. Its production is upregulated by a variety of factors including 1,25 (OH)2 vitamin D3, high dietary phosphate intake, and parathyroid hormone (PTH). Recently, iron deficiency and hypoxia have been suggested as additional regulators of FGF23 and a role of erythropoietin (EPO) was shown. However, the regulation of FGF23 by EPO and the impact on phosphate and 1,25(OH)2 vitamin D3 are not completely understood. Here, we demonstrate that acute administration of recombinant human EPO (rhEPO) to healthy humans increases the C-terminal fragment of FGF23 (C-terminal FGF23) but not intact FGF23 (iFGF23). In mice, rhEPO stimulates acutely (24 h) C-terminal FGF23 but iFGF23 only after 4 days without effects on PTH and plasma phosphate. 1,25 (OH)2 D3 levels and αklotho expression in the kidney decrease after 4 days. rhEPO induced FGF23 mRNA in bone marrow but not in bone, with increased staining of FGF23 in CD71+ erythroid precursors in bone marrow. Chronic elevation of EPO in transgenic mice increases iFGF23. Finally, acute injections of recombinant FGF23 reduced renal EPO mRNA expression. Our data demonstrate stimulation of FGF23 levels in mice which impacts mostly on 1,25 (OH)2 vitamin D3 levels and metabolism. In humans, EPO is mostly associated with the C-terminal fragment of FGF23; in mice, EPO has a time-dependent effect on both FGF23 forms. EPO and FGF23 may form a feedback loop controlling and linking erythropoiesis and mineral metabolism.


Assuntos
Eritropoetina/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação para Cima , Adulto , Animais , Medula Óssea/metabolismo , Calcitriol/metabolismo , Células Cultivadas , Retroalimentação Fisiológica , Feminino , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/metabolismo , Humanos , Rim/metabolismo , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hormônio Paratireóideo/metabolismo
20.
PLoS One ; 13(5): e0195427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771914

RESUMO

BACKGROUND: The 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) together with parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) regulates calcium (Ca2+) and phosphate (Pi) homeostasis, 1,25(OH)2D3 synthesis is mediated by hydroxylases of the cytochrome P450 (Cyp) family. Vitamin D is first modified in the liver by the 25-hydroxylases CYP2R1 and CYP27A1 and further activated in the kidney by the 1α-hydroxylase CYP27B1, while the renal 24-hydroxylase CYP24A1 catalyzes the first step of its inactivation. While the kidney is the main organ responsible for circulating levels of active 1,25(OH)2D3, other organs also express some of these enzymes. Their regulation, however, has been studied less. METHODS AND RESULTS: Here we investigated the effect of several Pi-regulating factors including dietary Pi, PTH and FGF23 on the expression of the vitamin D hydroxylases and the vitamin D receptor VDR in renal and extrarenal tissues of mice. We found that with the exception of Cyp24a1, all the other analyzed mRNAs show a wide tissue distribution. High dietary Pi mainly upregulated the hepatic expression of Cyp27a1 and Cyp2r1 without changing plasma 1,25(OH)2D3. FGF23 failed to regulate the expression of any of the studied hydroxylases at the used dosage and treatment length. As expected, renal mRNA expression of Cyp27b1 was reduced and Cyp24a1 was increased in response to 1,25(OH)2D3 treatment. However, the 25-hydroxylases were rather unaffected by 1,25(OH)2D3 treatment. CONCLUSIONS: The analyzed vitamin D hydroxylases are regulated in a tissue and treatment-specific manner.


Assuntos
Calcitriol/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta , Fatores de Crescimento de Fibroblastos/farmacologia , Rim/efeitos dos fármacos , Fosfatos/farmacologia , Vitamina D/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Fator de Crescimento de Fibroblastos 23 , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Rim/enzimologia , Rim/metabolismo , Masculino , Camundongos , Hormônio Paratireóideo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...