Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(14): 22284-22295, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475343

RESUMO

Angular momentum is an important physical property that plays a key role in light-matter interactions, such as spin-orbit interaction. Here, we investigate theoretically and experimentally the spin-orbit interaction between a circularly polarized optical (spin) and a transverse vortex acoustic wave (orbital) using Brillouin backscattering in a silica optical nanofiber. We specifically explore the state of polarization of Brillouin backscattering induced by the TR21 torso-radial vortex acoustic mode that carries an orbital angular momentum. Using a full-vectorial theoretical model, we predict and observe two operating regimes for which the backscattered Brillouin signal is either depolarized or circularly polarized, depending on the input pump polarization. We demonstrate that when the pump is circularly polarized and thus carries a spin angular momentum, the backscattered signal undergoes a handedness reversal of circular polarization due to opto-acoustic spin-orbit interaction and the conservation of overall angular momentum.

2.
Opt Lett ; 48(12): 3319-3322, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319091

RESUMO

Piezoelectric stretching of optical fiber is a technique that enables the creation of optical delays of a few picoseconds; this is useful in a variety of applications in interferometry or optical cavities. Most commercial fiber stretchers involve lengths of fiber of a few tens of meters. Using a 120-mm-long optical micro-nanofiber, we can create a compact optical delay line that achieves tunable delays of up to 19 ps at telecommunication wavelengths. The high elasticity of silica and the micron-scale diameter allow this significant optical delay to be achieved with low tensile force while keeping the overall length short. We successfully report both static and dynamic operation of this novel, to the best of our knowledge, device. It could find application in interferometry and laser cavity stabilization, where short optical paths and strong resistance to the environment would be required.


Assuntos
Nanofibras , Macas , Desenho de Equipamento , Lasers , Fibras Ópticas
3.
Opt Express ; 31(13): 21542-21552, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381250

RESUMO

We investigate a novel distributed Brillouin optical time domain reflectometer (BOTDR) using standard telecommunication fibers based on single-photon avalanche diodes (SPADs) in gated mode, ν -BOTDR, with a range of 120 km and 10 m spatial resolution. We experimentally demonstrate the ability to perform a distributed temperature measurement, by detecting a hot spot at 100 km. Instead of using a frequency scan like conventional BOTDR, we use a frequency discriminator based on the slope of a fiber Bragg grating (FBG) to convert the count rate of the SPAD into a frequency shift. A procedure to take into account the FBG drift during the acquisition and perform sensitive and reliable distributed measurements is described. We also present the possibility to differentiate strain and temperature.

4.
Water Res ; 230: 119582, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642030

RESUMO

Karst aquifers are an important water resource worldwide particularly exposed to anthropogenic pollution, including antibiotic-resistance. The release of antibiotic-resistant bacterial pathogens in the environment is a major public health challenge worldwide. In this One Health study, we aimed to determine the effect of karst on antibiotic-resistant bacteria. For this purpose, we determined the concentrations of extended-spectrum ß-lactamases-producing Escherichia coli (ESBL-Ec) for 92 weeks in a rural karst hydrosystem providing drinking water. ESBL-Ec isolates (n = 130) were sequenced by whole genome sequencing. We analysed the isolates at different levels of granularity, i.e., phylogroup, sequence type, presence of antibiotic-resistance genes, mutations conferring antibiotic-resistance, and virulence genes. The ESBL-Ec concentrations were spatially and temporally heterogeneous in the studied karst hydrosystem. ESBL-Ec isolates survived in the karst and their concentrations were mostly explained by the hydrodynamic of the hydrosystem. We demonstrate that the studied karst has no filtration effect on ESBL-Ec, either quantitatively (i.e., in the ESBL-Ec concentrations) or qualitatively (i.e., in the genetic characteristics of ESBL-Ec isolates).


Assuntos
Infecções por Escherichia coli , Humanos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos
5.
Nat Commun ; 13(1): 1432, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301307

RESUMO

Brillouin scattering has been widely exploited for advanced photonics functionalities such as microwave photonics, signal processing, sensing, lasing, and more recently in micro- and nano-photonic waveguides. Most of the works have focused on the opto-acoustic interaction driven from the core region of micro- and nano-waveguides. Here we observe, for the first time, an efficient Brillouin scattering generated by an evanescent field nearby a single-pass sub-wavelength waveguide embedded in a pressurised gas cell, with a maximum gain coefficient of 18.90 ± 0.17 m-1W-1. This gain is 11 times larger than the highest Brillouin gain obtained in a hollow-core fibre and 79 times larger than in a standard single-mode fibre. The realisation of strong free-space Brillouin scattering from a waveguide benefits from the flexibility of confined light while providing a direct access to the opto-acoustic interaction, as required in free-space optoacoustics such as Brillouin spectroscopy and microscopy. Therefore, our work creates an important bridge between Brillouin scattering in waveguides, Brillouin spectroscopy and microscopy, and opens new avenues in light-sound interactions, optomechanics, sensing, lasing and imaging.

6.
Opt Express ; 30(2): 815-824, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209263

RESUMO

We present a new class of force sensor based on Brillouin scattering in an optical nanofiber. The sensor is a silica nanofiber of a few centimeters with a submicron transverse dimension. This extreme form factor enables one to measure forces ranging from 10 µN to 0.2N. The linearity of the sensor can be ensured using the multimode character of the Brillouin spectrum in optical nanofibers. We also demonstrated non-static operation and a competitive signal-to-noise ratio as compared to commercial force sensor resistor.

7.
Opt Express ; 29(24): 39159-39172, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809285

RESUMO

The evolution of the light intensity along an optical waveguide is evaluated by analysing far-field right-angle Rayleigh light scattering. The method is based on point by point spectral mapping distributed along the optical waveguide with a micrometric spatial resolution given by a confocal microscope, a high spectral resolution given by a spectrometer, and a high signal-to-noise ratio given by a highly cooled detector. This non-destructive and non-invasive experimental method allows the observation of the general Rayleigh scattering profile of the optical waveguide in a nominal operation, i.e., whatever the power or the wavelength of the light source, and can be applied to micrometer-scale waveguides of several centimeters in length, for which the longitudinal characterization is challenging. Applied to a tapered optical fiber, called nanofiber, with submicrometer final diameter and several centimeters long, the method has proved its capacity to collect different optical characteristics such as optical losses, mode beatings, transition from core-cladding to cladding-air guidance for different modes, localization of punctual defects, leaking of high order modes no longer guided by the fiber. Furthermore, the experimental results are successfully compared to measurements provided by the state-of-the-art Optical Backscatter Reflectometer system, and to numerical simulations. Moreover, coupled to the spectral resolution of the spectrometer, the method have allowed the distributed measurements of the Raman cascading process along the nanofiber, for the first time to our knowledge. The experimental technique developed in this work is complementary to other characterization methods generally focused on the optical parameters of the waveguide input or output. This technique can also be extended to others waveguides whatever its geometry which represents a strong interest for deepen optical characterization of photonics waveguides, or for other optical regimes characterized by spectral evolution of the field propagating along the waveguide.

8.
Opt Express ; 27(20): 29460-29470, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684680

RESUMO

Optical nanofibers have recently emerged as attractive nanophotonic platforms for many applications ranging from quantum technologies to nonlinear optics, due to both their tight optical confinement and their wide evanescent field. Herein we examine theoretically the optical Kerr effect induced by the evanescent field of a silica nanofiber surrounded by different nonlinear liquids such as water, ethanol and acetone and we further compare them with air cladding. Our results show that the evanescent Kerr effect significantly dominates the usual Kerr effect inside the silica core for sub-wavelength diameters below 560 nm, using acetone. We further report the observation of the evanescent Kerr effect through surrogate measurements of stimulated Raman-Kerr scattering (SRKS) in an acetone-immersed silica nanofiber. Our findings open the way towards potential applications of optical nanofibers to ultra-sensitive liquid sensing or to enhancing the nonlinear effects through the evanescent field.

9.
Opt Lett ; 43(16): 4005-4008, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106938

RESUMO

Germanosilicate glasses are substantial materials in fiber optic technology that have allowed the control of optical properties such as numerical aperture, photosensitivity, dispersion, nonlinearity, and transparency toward mid-infrared. Here, we investigate stimulated Brillouin scattering in single-mode germanosilicate core fibers with increasing GeO2 content from 3.6 mol% up to 98 mol%. Our results reveal a wide Brillouin frequency shift tunability over more than 3 GHz with a strong decrease down to 7.7 GHz at high GeO2 content owing to the low acoustic velocity, while the Brillouin linewidth significantly broadens up to 100 MHz beyond 50 mol% of GeO2 content. In addition, large Brillouin gain up to 6.5 times larger than in standard silica fibers is also reported by means of a pump-probe experiment.

10.
Appl Opt ; 57(10): C77-C82, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714208

RESUMO

We model the generation of coherent acoustic beams in a homogeneous solid from the interference of two oppositely propagating, detuned optical laser beams. This configuration is reciprocal to Brillouin light scattering in the backward interaction arrangement. Generation of a confined ultrasound beam is predicted, close to the Brillouin frequency. Optoacoustic gain spectra and beam shapes are obtained numerically using a finite element model. The acoustic spectra are non-symmetrical, i.e., non-Lorentzian, and result from excitation of the continuum of bulk elastic waves. The acoustic beam width correspondingly varies with detuning frequency and optical beam waist.

11.
Opt Lett ; 43(7): 1487-1490, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601011

RESUMO

Elastic vibrations in subwavelength structures have gained importance recently in fundamental light-matter studies and various optoacoustic applications. Existing techniques have revealed the presence of distinct acoustic resonances inside silica microwires yet remain unable to individually localize them. Here, we locally activate distinct classes of acoustic resonances inside a tapered fiber using a phase-correlation distributed Brillouin method. Experimental results verify the presence of surface and hybrid acoustic waves at distinct fiber locations and demonstrate, to the best of our knowledge, the first distributed surface acoustic wave measurement. This technique is important for understanding properties of optoacoustic interactions and enabling designs of novel optomechanical devices.

12.
Opt Lett ; 41(14): 3269-72, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420512

RESUMO

We report, to the best of our knowledge, the first experimental observation of surface Brillouin scattering in silica-based photonic crystal fibers, arising from the interaction between guided light and surface acoustic waves. This was achieved using small-core and high air-filling fraction microstructured fibers that enable a strong opto-acoustic coupling near the air holes while mitigating the acoustic leakages in the microstructured cladding. It is further shown that this new type of light scattering is highly sensitive to the fiber air-hole microstructure, thus providing a passive and efficient way to control it. Our observations are confirmed through numerical simulations of the elastodynamics equation.

13.
Opt Lett ; 40(18): 4281-4, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371916

RESUMO

We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers.

14.
Nat Commun ; 5: 5242, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25341638

RESUMO

Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s(-1) and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics.

15.
Opt Lett ; 39(3): 482-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487845

RESUMO

We investigate the onset of nonlinear effects in hybrid polymer-chalcogenide optical microwires and show that they provide an enhanced Kerr nonlinearity while simultaneously mitigating stimulated Brillouin scattering as compared to both chalcogenide and silica optical fibers. It is shown in particular that the polymer cladding surrounding the microwire significantly broadens the Brillouin linewidth and increases the threshold, thus enabling Kerr nonlinear applications. We also study the influence of the wire diameter on the Brillouin dynamics and demonstrate that the Brillouin frequency shift can be finely tuned over a wide radio-frequency range.

16.
Opt Lett ; 39(18): 5407-10, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466284

RESUMO

We describe a novel optofluidic fiber arrangement that allows for nonlinear effects enhancement between fluids and laser light while suppressing the generation of cavitation bubbles. By filling this optofluidic system with toluene and pumping it with a nanosecond microchip laser, we demonstrate the efficient generation of a broadband Raman frequency comb spanning from 532 to more than 1000 nm. It is further shown that the Raman frequency comb dramatically broadens toward broadband continuum light due to the stimulated Raman-Kerr scattering.

17.
Appl Opt ; 50(35): 6543-7, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-22193134

RESUMO

High-frequency guided acoustic Brillouin modes have recently been observed in small-core silica photonic crystal fibers. In this paper, we investigate the temperature dependence of the optical sideband frequency generated by one of these guided acoustic waves. The experimental results show a temperature coefficient of 100 kHz/°C at an acoustic resonance frequency of 1.15 GHz and are in very good agreement with the theoretical predictions. This coefficient demonstrates a temperature sensitivity 10 times larger than that previously reported in conventional single-mode fibers, which is promising in view of potential applications to optical fiber sensors.

18.
Opt Express ; 19(10): 9690-8, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643226

RESUMO

We demonstrate theoretically that photons and acoustic phonons can be simultaneously guided and slowed down in specially designed nanostructures. Phoxonic crystal waveguides presenting simultaneous phononic and photonic band gaps were designed in perforated silicon membranes that can be conveniently obtained using silicon-on-insulator technology. Geometrical parameters for simultaneous photonic and phononic band gaps were first chosen for optical wavelengths around 1550 nm, based on the finite element analysis of a perfect phoxonic crystal of circular holes. A plain core waveguide was then defined, and simultaneous slow light and elastic guided modes were identified for some waveguide width. Joint guidance of light and elastic waves is predicted with group velocities as low as c/25 and 180 m/s, respectively.

19.
Opt Express ; 19(8): 7381-97, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21503049

RESUMO

A general analytic solution for Brillouin distributed sensing in optical fibers with sub-meter spatial resolution is obtained by solving the acoustical-optical coupled wave equations by a perturbation method. The Brillouin interaction of a triad of square pump pulses with a continuous signal is described, covering a wide range of pumping schemes. The model predicts how the acoustic wave, the signal amplitude and the optical gain spectral profile depend upon the pumping scheme. Sub-meter spatial resolution is demonstrated for bright-, dark- and π-shifted interrogating pump pulses, together with disturbing echo effects, and the results compare favorably with experimental data. This analytic solution is an excellent tool not only for optimizing the pumping scheme but also for post-processing the measured data to remove resolution degrading features.

20.
Appl Opt ; 49(24): 4604-9, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20733632

RESUMO

We present useful expressions predicting the filling time of gaseous species inside photonic crystal fibers. Based on the theory of diffusion, this gas-filling model can be applied to any given fiber geometry or length by calculating diffusion coefficients. This was experimentally validated by monitoring the filling process of acetylene gas in several fiber samples of various geometries and lengths. The measured filling times agree well, within +/-15%, with the predicted values for all fiber samples. In addition, the pressure dependence of the diffusion coefficient was experimentally verified by filling a given fiber sample with acetylene gas at various pressures. Finally, optimized conditions for gas-light interaction are determined by considering the gas flow dynamics in the design of microstructured fibers for gas detection and all-fiber gas cell applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...