Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 21(10): 1645-56, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724536

RESUMO

Arginine-vasopressin (AVP) modulates the water channel aquaporin-2 (AQP2) in the renal collecting duct to maintain homeostasis of body water. AVP binds to vasopressin V2 receptors (V2R), increasing cAMP, which promotes the redistribution of AQP2 from intracellular vesicles into the plasma membrane. cAMP also increases AQP2 transcription, but whether altered degradation also modulates AQP2 protein levels is not well understood. Here, elevation of cAMP increased AQP2 protein levels within 30 minutes in primary inner medullary collecting duct (IMCD) cells, in human embryonic kidney (HEK) 293 cells ectopically expressing AQP2, and in mouse kidneys. Accelerated transcription or translation did not explain this increase in AQP2 abundance. In IMCD cells, cAMP inhibited p38-mitogen-activated protein kinase (p38-MAPK) via activation of protein kinase A (PKA). Inhibition of p38-MAPK associated with decreased phosphorylation (serine 261) and polyubiquitination of AQP2, preventing proteasomal degradation. Our results demonstrate that AVP enhances AQP2 protein abundance by altering its proteasomal degradation through a PKA- and p38-MAPK-dependent pathway.


Assuntos
Aquaporina 2/metabolismo , Arginina Vasopressina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Colforsina , AMP Cíclico/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Ratos , Transcrição Gênica
2.
Handb Exp Pharmacol ; (190): 133-57, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19096775

RESUMO

Principal cells lining renal collecting ducts control the fine-tuning of body water homeostasis by regulating water reabsorption through the water channels aquaporin-2 (AQP2), aquaporin-3 (AQP3), and aquaporin-4 (AQP4). While the localization of AQP2 is subject to regulation by arginine-vasopressin (AVP), AQP3 and AQP4 are constitutively expressed in the basolateral plasma membrane. AVP adjusts the amount of AQP2 in the plasma membrane by triggering its redistribution from intracellular vesicles into the plasma membrane. This permits water entry into the cells and water exit through AQP3 and AQP4. The translocation of AQP2 is initiated by an increase in cAMP following V2R activation through AVP. The AVP-induced rise in cAMP activates protein kinase A (PKA), which in turn phosphorylates AQP2, and thereby triggers the redistribution of AQP2. Several proteins participating in the control of cAMP-dependent AQP2 trafficking have been identified; for example, A kinase anchoring proteins (AKAPs) tethering PKA to cellular compartments; phosphodiesterases (PDEs) regulating the local cAMP level; cytoskeletal components such as F-actin and microtubules; small GTPases of the Rho family controlling cytoskeletal dynamics; motor proteins transporting AQP2-bearing vesicles to and from the plasma membrane for exocytic insertion and endocytic retrieval; SNAREs inducing membrane fusions, hsc70, a chaperone, important for endocytic retrieval. In addition, cAMP-independent mechanisms of translocation mainly involving the F-actin cytoskeleton have been uncovered. Defects of AQP2 trafficking cause diseases such as nephrogenic diabetes insipidus (NDI), a disorder characterized by a massive loss of hypoosmotic urine.This review summarizes recent data elucidating molecular mechanisms underlying the trafficking of AQP2. In particular, we focus on proteins involved in the regulation of trafficking, and physiological and pathophysiological stimuli determining the cellular localization of AQP2. The identification of proteins and protein-protein interactions may lead to the development of drugs targeting AQP2 trafficking. Such drugs may be suitable for the treatment of diseases associated with dysregulation of body water homeostasis, including NDI or cardiovascular diseases (e.g., chronic heart failure) where the AVP level is elevated, inducing excessive water retention.


Assuntos
Aquaporina 2/metabolismo , Membrana Celular/metabolismo , Túbulos Renais Coletores/metabolismo , Equilíbrio Hidroeletrolítico , Água/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Arginina Vasopressina/metabolismo , Cálcio/metabolismo , Compartimento Celular , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Diabetes Insípido Nefrogênico/metabolismo , Diabetes Insípido Nefrogênico/fisiopatologia , Endocitose , Homeostase , Humanos , Túbulos Renais Coletores/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Transporte Proteico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA