Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38395618

RESUMO

Pure-tone audiograms often poorly predict elderly humans' ability to communicate in everyday complex acoustic scenes. Binaural processing is crucial for discriminating sound sources in such complex acoustic scenes. The compromised perception of communication signals presented above hearing threshold has been linked to both peripheral and central age-related changes in the auditory system. Investigating young and old Mongolian gerbils of both sexes, an established model for human hearing, we demonstrate age-related supra-threshold deficits in binaural hearing using behavioral, electrophysiological, anatomical, and imaging methods. Binaural processing ability was measured as the binaural masking level difference (BMLD), an established measure in human psychophysics. We tested gerbils behaviorally with "virtual headphones," recorded single-unit responses in the auditory midbrain and evaluated gross midbrain and cortical responses using positron emission tomography (PET) imaging. Furthermore, we obtained additional measures of auditory function based on auditory brainstem responses, auditory-nerve synapse counts, and evidence for central inhibitory processing revealed by PET. BMLD deteriorates already in middle-aged animals having normal audiometric thresholds and is even worse in old animals with hearing loss. The magnitude of auditory brainstem response measures related to auditory-nerve function and binaural processing in the auditory brainstem also deteriorate. Furthermore, central GABAergic inhibition is affected by age. Because the number of synapses in the apical turn of the inner ear was not reduced in middle-aged animals, we conclude that peripheral synaptopathy contributes little to binaural processing deficits. Exploratory analyses suggest increased hearing thresholds, altered binaural processing in the brainstem and changed central GABAergic inhibition as potential contributors.


Assuntos
Surdez , Perda Auditiva , Masculino , Idoso , Pessoa de Meia-Idade , Feminino , Animais , Humanos , Gerbillinae , Audição/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Limiar Auditivo , Percepção Auditiva/fisiologia , Estimulação Acústica
2.
Front Neurosci ; 17: 1238941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033551

RESUMO

Introduction: Understanding speech in a noisy environment, as opposed to speech in quiet, becomes increasingly more difficult with increasing age. Using the quiet-aged gerbil, we studied the effects of aging on speech-in-noise processing. Specifically, behavioral vowel discrimination and the encoding of these vowels by single auditory-nerve fibers were compared, to elucidate some of the underlying mechanisms of age-related speech-in-noise perception deficits. Methods: Young-adult and quiet-aged Mongolian gerbils, of either sex, were trained to discriminate a deviant naturally-spoken vowel in a sequence of vowel standards against a speech-like background noise. In addition, we recorded responses from single auditory-nerve fibers of young-adult and quiet-aged gerbils while presenting the same speech stimuli. Results: Behavioral vowel discrimination was not significantly affected by aging. For both young-adult and quiet-aged gerbils, the behavioral discrimination between /eː/ and /iː/ was more difficult to make than /eː/ vs. /aː/ or /iː/ vs. /aː/, as evidenced by longer response times and lower d' values. In young-adults, spike timing-based vowel discrimination agreed with the behavioral vowel discrimination, while in quiet-aged gerbils it did not. Paradoxically, discrimination between vowels based on temporal responses was enhanced in aged gerbils for all vowel comparisons. Representation schemes, based on the spectrum of the inter-spike interval histogram, revealed stronger encoding of both the fundamental and the lower formant frequencies in fibers of quiet-aged gerbils, but no qualitative changes in vowel encoding. Elevated thresholds in combination with a fixed stimulus level, i.e., lower sensation levels of the stimuli for old individuals, can explain the enhanced temporal coding of the vowels in noise. Discussion: These results suggest that the altered auditory-nerve discrimination metrics in old gerbils may mask age-related deterioration in the central (auditory) system to the extent that behavioral vowel discrimination matches that of the young adults.

3.
J Acoust Soc Am ; 154(1): 81-94, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37409781

RESUMO

Masking can reduce the efficiency of communication and prey and predator detection. Most underwater sounds fluctuate in amplitude, which may influence the amount of masking experienced by marine mammals. The hearing thresholds of two harbor seals for tonal sweeps (centered at 4 and 32 kHz) masked by sinusoidal amplitude modulated (SAM) Gaussian one-third octave noise bands centered around the narrow-band test sweep frequencies, were studied with a psychoacoustic technique. Masking was assessed in relation to signal duration, (500, 1000, and 2000 ms) and masker level, at eight amplitude modulation rates (1-90 Hz). Masking release (MR) due to SAM compared thresholds in modulated and unmodulated maskers. Unmodulated maskers resulted in critical ratios of 21 dB at 4 kHz and 31 dB at 32 kHz. Masked thresholds were similarly affected by SAM rate with the lowest thresholds and the largest MR being observed for SAM rates of 1 and 2 Hz at higher masker levels. MR was higher for 32-kHz maskers than for 4-kHz maskers. Increasing signal duration from 500 ms to 2000 ms had minimal effect on MR. The results are discussed with respect to MR resulting from envelope variation and the impact of noise in the environment on target signal detection.


Assuntos
Phoca , Animais , Limiar Auditivo , Mascaramento Perceptivo , Ruído/efeitos adversos , Audição , Cetáceos
4.
Eur J Neurosci ; 56(3): 4060-4085, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724973

RESUMO

Schroeder-phase harmonic tone complexes have been used in physiological and psychophysical studies in several species to gain insight into cochlear function. Each pitch period of the Schroeder stimulus contains a linear frequency sweep; the duty cycle, sweep velocity, and direction are controlled by parameters of the phase spectrum. Here, responses to a range of Schroeder-phase harmonic tone complexes were studied both behaviorally and in neural recordings from the auditory nerve and inferior colliculus of Mongolian gerbils. Gerbils were able to discriminate Schroeder-phase harmonic tone complexes based on sweep direction, duty cycle, and/or velocity for fundamental frequencies up to 200 Hz. Temporal representation in neural responses based on the van Rossum spike-distance metric, with time constants of either 1 ms or related to the stimulus' period, was compared with average discharge rates. Neural responses and behavioral performance were both expressed in terms of sensitivity, d', to allow direct comparisons. Our results suggest that in the auditory nerve, stimulus fine structure is represented by spike timing, whereas envelope is represented by rate. In the inferior colliculus, both temporal fine structure and envelope appear to be represented best by rate. However, correlations between neural d' values and behavioral sensitivity for sweep direction were strongest for both temporal metrics, for both auditory nerve and inferior colliculus. Furthermore, the high sensitivity observed in the inferior colliculus neural rate-based discrimination suggests that these neurons integrate across multiple inputs arising from the auditory periphery.


Assuntos
Colículos Inferiores , Neurofisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Nervo Coclear/fisiologia , Gerbillinae , Colículos Inferiores/fisiologia , Percepção
5.
Hear Res ; 418: 108472, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276418

RESUMO

The present study establishes the Mongolian gerbil (Meriones unguiculatus) as a model for investigating the perception of human speech sounds. We report data on the discrimination of logatomes (CVCs - consonant-vowel-consonant combinations with outer consonants /b/, /d/, /s/ and /t/ and central vowels /a/, /aː/, /ɛ/, /eː/, /ɪ/, /iː/, /ɔ/, /oː/, /ʊ/ and /uː/, VCVs - vowel-consonant-vowel combinations with outer vowels /a/, /ɪ/ and /ʊ/ and central consonants /b/, /d/, /f/, /g/, /k/, /l/, /m/, /n/, /p/, /s/, /t/ and /v/) by gerbils. Four gerbils were trained to perform an oddball target detection paradigm in which they were required to discriminate a deviant CVC or VCV in a sequence of CVC or VCV standards, respectively. The experiments were performed with an ICRA-1 noise masker with speech-like spectral properties, and logatomes of multiple speakers were presented at various signal-to-noise ratios. Response latencies were measured to generate perceptual maps employing multidimensional scaling, which visualize the gerbils' internal maps of the sounds. The dimensions of the perceptual maps were correlated to multiple phonetic features of the speech sounds for evaluating which features of vowels and consonants are most important for the discrimination. The perceptual representation of vowels and consonants in gerbils was similar to that of humans, although gerbils needed higher signal-to-noise ratios for the discrimination of speech sounds than humans. The gerbils' discrimination of vowels depended on differences in the frequencies of the first and second formant determined by tongue height and position. Consonants were discriminated based on differences in combinations of their articulatory features. The similarities in the perception of logatomes by gerbils and humans renders the gerbil a suitable model for human speech sound discrimination.


Assuntos
Fonética , Percepção da Fala , Animais , Percepção Auditiva/fisiologia , Gerbillinae , Humanos , Fala/fisiologia , Percepção da Fala/fisiologia
6.
J Exp Biol ; 225(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156129

RESUMO

The mechanisms of sound localization are actively debated, especially which cues are predominately used and why. Our study provides behavioural data in chickens (Gallus gallus) and relates these to estimates of the perceived physical cues. Sound localization acuity was quantified as the minimum audible angle (MAA) in azimuth. Pure-tone MAA was 12.3, 9.3, 8.9 and 14.5 deg for frequencies of 500, 1000, 2000 and 4000 Hz, respectively. Broadband-noise MAA was 12.2 deg, which indicates excellent behavioural acuity. We determined 'external cues' from head-related transfer functions of chickens. These were used to derive 'internal cues', taking into account published data on the effect of the coupled middle ears. Our estimates of the internal cues indicate that chickens likely relied on interaural time difference cues alone at low frequencies of 500 and 1000 Hz, whereas at 2000 and 4000 Hz, interaural level differences may be the dominant cue.


Assuntos
Localização de Som , Animais , Cafeína , Galinhas , Sinais (Psicologia) , Orelha Média
7.
Neurobiol Aging ; 108: 133-145, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601244

RESUMO

Loss of inner hair cell-auditory nerve fiber synapses is considered to be an important early stage of neural presbyacusis. Mass potentials, recorded at the cochlear round window, can be used to derive the neural index (NI), a sensitive measure for pharmacologically-induced synapse loss. Here, we investigate the applicability of the NI for measuring age-related auditory synapse loss in young-adult, middle-aged, and old Mongolian gerbils. Synapse loss, which was progressively evident in the 2 aged groups, correlated weakly with NI when measured at a fixed sound level of 60 dB SPL. However, the NI was confounded by decreases in single-unit firing rates at 60 dB SPL. NI at 30 dB above threshold, when firing rates were similar between age groups, did not correlate with synapse loss. Our results show that synapse loss is poorly reflected in the NI of aged gerbils, particularly if further peripheral pathologies are present. The NI may therefore not be a reliable clinical tool to assess synapse loss in aged humans with peripheral hearing loss.


Assuntos
Envelhecimento/patologia , Células Ciliadas Auditivas Internas/patologia , Presbiacusia/patologia , Sinapses/patologia , Estimulação Acústica , Animais , Limiar Auditivo , Gerbillinae , Presbiacusia/fisiopatologia
8.
Eur J Neurosci ; 51(5): 1242-1253, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247467

RESUMO

In the analysis of acoustic scenes, we easily miss sounds or are insensitive to sound features that are salient if presented in isolation. This insensitivity that is not due to interference in the inner ear is termed informational masking (IM). So far, the cellular mechanisms underlying IM remained elusive. Here, we apply a sequential IM paradigm to humans and gerbils using a sound level increment detection task determining the sensitivity to target tones in a background of standard (same frequency) and distracting tones (varying in level and frequency). The amount of IM that was indicated by the level increment thresholds depended on the frequency separation between the distracting and the standard and target tones. In humans and gerbils, we observed similar perceptual thresholds. A release from IM of more than 20 dB was observed in both species if the distracting tones were well segregated in frequency from the other tones. Neuronal rate responses elicited by similar sequences in gerbil inferior colliculus and auditory cortex were recorded. At both levels of the auditory pathway, the neuronal thresholds obtained with a signal-detection-theoretic approach deducing the sensitivity from the analysis of the neurons' receiver operating characteristics matched the psychophysical thresholds revealing that IM already emerges at midbrain level. By applying objective response measures in physiology and psychophysics, we demonstrated that the population of neurons has a sufficient sensitivity for explaining the perceptual level increment thresholds indicating IM. There was a good correspondence between the neuronal and perceptual release from IM being related to auditory stream segregation.


Assuntos
Córtex Auditivo , Colículos Inferiores , Estimulação Acústica , Vias Auditivas , Percepção Auditiva , Humanos , Percepção , Mascaramento Perceptivo
9.
J Neurosci ; 40(2): 343-354, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31719164

RESUMO

People suffering from age-related hearing loss typically present with deficits in temporal processing tasks. Temporal processing deficits have also been shown in single-unit studies at the level of the auditory brainstem, midbrain, and cortex of aged animals. In this study, we explored whether temporal coding is already affected at the level of the input to the central auditory system. Single-unit auditory nerve fiber recordings were obtained from 41 Mongolian gerbils of either sex, divided between young, middle-aged, and old gerbils. Temporal coding quality was evaluated as vector strength in response to tones at best frequency, and by constructing shuffled and cross-stimulus autocorrelograms, and reverse correlations, from responses to 1 s noise bursts at 10-30 dB sensation level (dB above threshold). At comparable sensation levels, all measures showed that temporal coding was not altered in auditory nerve fibers of aging gerbils. Furthermore, both temporal fine structure and envelope coding remained unaffected. However, spontaneous rates were decreased in aging gerbils. Importantly, despite elevated pure tone thresholds, the frequency tuning of auditory nerve fibers was not affected. These results suggest that age-related temporal coding deficits arise more centrally, possibly due to a loss of auditory nerve fibers (or their peripheral synapses) but not due to qualitative changes in the responses of remaining auditory nerve fibers. The reduced spontaneous rate and elevated thresholds, but normal frequency tuning, of aged auditory nerve fibers can be explained by the well known reduction of endocochlear potential due to strial dysfunction in aged gerbils.SIGNIFICANCE STATEMENT As our society ages, age-related hearing deficits become ever more prevalent. Apart from decreased hearing sensitivity, elderly people often suffer from a reduced ability to communicate in daily settings, which is thought to be caused by known age-related deficits in auditory temporal processing. The current study demonstrated, using several different stimuli and analysis techniques, that these putative temporal processing deficits are not apparent in responses of single-unit auditory nerve fibers of quiet-aged gerbils. This suggests that age-related temporal processing deficits may develop more central to the auditory nerve, possibly due to a reduced population of active auditory nerve fibers, which will be of importance for the development of treatments for age-related hearing disorders.


Assuntos
Envelhecimento/fisiologia , Percepção Auditiva/fisiologia , Nervo Coclear/fisiologia , Perda Auditiva/fisiopatologia , Fibras Nervosas/fisiologia , Animais , Feminino , Gerbillinae , Masculino
10.
Artigo em Inglês | MEDLINE | ID: mdl-29476321

RESUMO

The main sound localisation cues in the horizontal plane are interaural time and level differences (ITDs and ILDs, respectively). ITDs are thought to be the dominant cue in the low-frequency range, ILDs the dominant cue in the high-frequency range. ITDs and ILDs co-occur. Their interaction and contribution to the lateralisation of pure tones by Mongolian gerbils was investigated behaviourally using cross-talk cancellation techniques for presenting ITDs and ILDs independently. First, ITDs were applied to pure tones with frequencies ≤ 2 kHz to the ongoing waveform, at the onsets and offsets, or in both the ongoing waveform and at the onsets and offsets. Gerbils could lateralise tones only if ongoing ITDs were present indicating that ongoing ITDs are decisive for the lateralisation of low-frequency tones. Second, an ITD was added to 2-to-6-kHz tones with varying ILD. Gerbils' lateralisation was unaffected by the ITD indicating that a large ILD provides a strong lateralisation cue at those frequencies. Finally, small ILDs were applied to 2-kHz tones with an ongoing ITD, pointing either to the same or opposing sides as the ITD. Gerbils' lateralisation was driven by the ITD but strongly affected by the ILD indicating that both interaural cues contribute to the lateralisation.


Assuntos
Sinais (Psicologia) , Lateralidade Funcional , Gerbillinae/psicologia , Audição , Percepção da Altura Sonora , Localização de Som , Percepção do Tempo , Estimulação Acústica , Animais , Gerbillinae/fisiologia , Masculino , Detecção de Sinal Psicológico , Fatores de Tempo
11.
PLoS One ; 12(4): e0175142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28394906

RESUMO

The Mongolian gerbil (Meriones unguiculatus) has become a key species in investigations of the neural processing of sound localization cues in mammals. While its sound localization has been tested extensively under free-field stimulation, many neurophysiological studies use headphones to present signals with binaural localization cues. The gerbil's behavioral sensitivity to binaural cues, however, is unknown for the lack of appropriate stimulation paradigms in awake behaving gerbils. We close this gap in knowledge by mimicking a headphone stimulation; we use free-field loudspeakers and apply cross-talk cancellation techniques to present pure tones with binaural cues via "virtual headphones" to gerbils trained in a sound localization task. All gerbils were able to lateralize sounds depending on the interaural time or level difference (ITD and ILD, respectively). For ITD stimuli, reliable responses were seen for frequencies ≤2.9 kHz, the highest frequency tested with ITD stimuli. ITD sensitivity was frequency-dependent with the highest sensitivity observed at 1 kHz. For stimuli with ITD outside the gerbil's physiological range, responses were cyclic indicating the use of phase information when lateralizing narrow-band sounds. For ILD stimuli, reliable responses were obtained for frequencies ≥2 kHz. The comparison of ITD and ILD thresholds with ITD and ILD thresholds derived from gerbils' free-field performance suggests that ongoing ITD information is the main cue for sound localization at frequencies <2 kHz. At 2 kHz, ITD and ILD cues are likely used in a complementary way. Verification of the use of the virtual headphones suggests that they can serve as a suitable substitute for conventional headphones particularly at frequencies ≤2 kHz.


Assuntos
Estimulação Acústica/métodos , Gerbillinae , Testes Psicológicos , Localização de Som , Estimulação Acústica/instrumentação , Animais , Condicionamento Operante , Discriminação Psicológica , Testes Auditivos/instrumentação , Testes Auditivos/métodos , Masculino , Modelos Animais , Modelos Teóricos , Psicometria
12.
Eur J Neurosci ; 45(3): 460-471, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27891687

RESUMO

Prior stimulation can influence the perception of sound source location. Some psychophysical sound localization procedures differ in the amount of prior stimulation, which may affect measures of localization accuracy. If and how particularly the number of preceding stimuli affects sound localization and the neural representation of sound source position has not been investigated so far and will be the focus of the present report. We trained Mongolian gerbils in a left/right discrimination task where the target stimulus was preceded by silence or followed a number of reference stimuli. Localization thresholds decreased with the number of references presented before the target stimulus. The smallest thresholds were found after the presentation of a train of 5 reference stimuli and after silence. We recorded from units in the inferior colliculus (IC) of anaesthetized gerbils using virtual-acoustic space stimuli mimicking the ones used in the behavioural task and applied signal detection theory to compare behavioural and neurometric thresholds. We found that neurometric thresholds based on spike rate information of single units covered a wide range of threshold values but only neurometric thresholds that were based on responses of small populations of IC units reached consistently thresholds we also observed in the behavioural experiment. Unlike behavioural thresholds, however, neurometric thresholds were independent of the number of reference stimuli suggesting that processing stages downstream from the IC might better reflect the effect of prior stimulation.


Assuntos
Condicionamento Clássico , Mesencéfalo/fisiologia , Localização de Som , Animais , Limiar Auditivo , Discriminação Psicológica , Feminino , Gerbillinae , Masculino
13.
J Acoust Soc Am ; 140(3): 1618, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914400

RESUMO

Auditory models have been developed for decades to simulate characteristics of the human auditory system, but it is often unknown how well auditory models compare to each other or perform in tasks they were not primarily designed for. This study systematically analyzes predictions of seven publicly-available cochlear filter models in response to a fixed set of stimuli to assess their capabilities of reproducing key aspects of human cochlear mechanics. The following features were assessed at frequencies of 0.5, 1, 2, 4, and 8 kHz: cochlear excitation patterns, nonlinear response growth, frequency selectivity, group delays, signal-in-noise processing, and amplitude modulation representation. For each task, the simulations were compared to available physiological data recorded in guinea pigs and gerbils as well as to human psychoacoustics data. The presented results provide application-oriented users with comprehensive information on the advantages, limitations and computation costs of these seven mainstream cochlear filter models.


Assuntos
Cóclea , Estimulação Acústica , Animais , Gerbillinae , Cobaias , Humanos , Ruído , Psicoacústica
14.
Hear Res ; 337: 46-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27173973

RESUMO

The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC.


Assuntos
Envelhecimento , Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Estimulação Acústica , Animais , Eletrodos , Eletroencefalografia , Feminino , Gerbillinae , Audição/fisiologia , Humanos , Masculino , Som , Localização de Som/fisiologia , Sinapses/fisiologia , Fatores de Tempo
15.
Adv Exp Med Biol ; 894: 219-227, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27080662

RESUMO

Barn owls are keen hunters of moving prey. They have evolved an auditory system with impressive anatomical and physiological specializations for localizing their prey. Here we present behavioural data on the owl's sensitivity for discriminating acoustic motion direction in azimuth that, for the first time, allow a direct comparison of neuronal and perceptual sensitivity for acoustic motion in the same model species. We trained two birds to report a change in motion direction within a series of repeating wideband noise stimuli. For any trial the starting point, motion direction, velocity (53-2400°/s), duration (30-225 ms) and angular range (12-72°) of the noise sweeps were randomized. Each test stimulus had a motion direction being opposite to that of the reference stimuli. Stimuli were presented in the frontal or the lateral auditory space. The angular extent of the motion had a large effect on the owl's discrimination sensitivity allowing a better discrimination for a larger angular range of the motion. In contrast, stimulus velocity or stimulus duration had a smaller, although significant effect. Overall there was no difference in the owls' behavioural performance between "inward" noise sweeps (moving from lateral to frontal) compared to "outward" noise sweeps (moving from frontal to lateral). The owls did, however, respond more often to stimuli with changing motion direction in the frontal compared to the lateral space. The results of the behavioural experiments are discussed in relation to the neuronal representation of motion cues in the barn owl auditory midbrain.


Assuntos
Vias Auditivas/fisiologia , Localização de Som/fisiologia , Estrigiformes/fisiologia , Estimulação Acústica , Animais , Mesencéfalo/fisiologia , Movimento (Física) , Ruído
16.
J Acoust Soc Am ; 137(1): EL71-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25618102

RESUMO

Although auditory brainstem responses (ABRs), the sound-evoked brain activity in response to transient sounds, are routinely measured in humans and animals there are often differences in ABR waveform morphology across studies. One possible reason may be the method of stimulus calibration. To explore this hypothesis, click-evoked ABRs were measured from seven ears in four Mongolian gerbils (Meriones unguiculatus) using three common spectrum calibration strategies: Minimum phase filter, linear phase filter, and no filter. The results show significantly higher ABR amplitude and signal-to-noise ratio, and better waveform resolution with the minimum phase filtered click than with the other strategies.


Assuntos
Estimulação Acústica , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Análise de Ondaletas , Animais , Calibragem , Gerbillinae/fisiologia , Razão Sinal-Ruído , Som
17.
Adv Exp Med Biol ; 787: 399-407, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23716246

RESUMO

Compared to humans, Mongolian gerbils (Meriones unguiculatus) are much more sensitive at detecting mistuning of frequency components of a harmonic complex (Klinge and Klump. J Acoust Soc Am 128:280-290, 2010). One processing mechanism suggested to result in the high sensitivity involves evaluating the phase shift that gradually develops between the mistuned and the remaining components in the same or separate auditory filters. To investigate if this processing mechanism may explain the observed sensitivity, we determined the gerbils' thresholds to detect a constant phase shift in a component of a harmonic complex that is introduced without a frequency shift. The gerbils' detection thresholds for constant phase shifts were considerably lower for a high-frequency component (6,400 Hz) than for a low-frequency component (400 Hz) of a 200-Hz harmonic complex and increased with decreasing stimulus duration. Compared to the phase shifts calculated from the mistuning detection thresholds, the detection thresholds for constant phase shifts were similar to those for gradual phase shifts for the low-frequency harmonic but considerably lower for the high-frequency harmonic. A simulation of the processing of harmonic complexes by the gerbil's peripheral auditory filters when components are phase shifted shows waveform changes comparable to those assessed for mistuning detection Klinge and Klump (J Acoust Soc Am 128:280-290, 2010) and provides evidence that detection of the gradual phase shifts may underlie mistuning detection.


Assuntos
Limiar Auditivo/fisiologia , Discriminação da Altura Tonal/fisiologia , Percepção da Altura Sonora/fisiologia , Psicoacústica , Estimulação Acústica/métodos , Animais , Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , Gerbillinae , Humanos , Modelos Animais , Ruído , Espectrografia do Som , Especificidade da Espécie
18.
PLoS One ; 7(9): e43615, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984436

RESUMO

Amplitude modulation can serve as a cue for segregating streams of sounds from different sources. Here we evaluate stream segregation in humans using ABA- sequences of sinusoidally amplitude modulated (SAM) tones. A and B represent SAM tones with the same carrier frequency (1000, 4000 Hz) and modulation depth (30, 100%). The modulation frequency of the A signals (f(modA)) was 30, 100 or 300 Hz, respectively. The modulation frequency of the B signals was up to four octaves higher (Δf(mod)). Three different ABA- tone patterns varying in tone duration and stimulus onset asynchrony were presented to evaluate the effect of forward suppression. Subjects indicated their 1- or 2-stream percept on a touch screen at the end of each ABA- sequence (presentation time 5 or 15 s). Tone pattern, f(modA), Δf(mod), carrier frequency, modulation depth and presentation time significantly affected the percentage of a 2-stream percept. The human psychophysical results are compared to responses of avian forebrain neurons evoked by different ABA- SAM tone conditions [1] that were broadly overlapping those of the present study. The neurons also showed significant effects of tone pattern and Δf(mod) that were comparable to effects observed in the present psychophysical study. Depending on the carrier frequency, modulation frequency, modulation depth and the width of the auditory filters, SAM tones may provide mainly temporal cues (sidebands fall within the range of the filter), spectral cues (sidebands fall outside the range of the filter) or possibly both. A computational model based on excitation pattern differences was used to predict the 50% threshold of 2-stream responses. In conditions for which the model predicts a considerably larger 50% threshold of 2-stream responses (i.e., larger Δf(mod) at threshold) than was observed, it is unlikely that spectral cues can provide an explanation of stream segregation by SAM.


Assuntos
Percepção Auditiva/fisiologia , Reconhecimento Fisiológico de Modelo , Som , Adulto , Limiar Auditivo/fisiologia , Feminino , Humanos , Masculino , Modelos Biológicos
19.
PLoS One ; 6(10): e26124, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028814

RESUMO

The amount of masking of sounds from one source (signals) by sounds from a competing source (maskers) heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz), two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth), and five different masker types (four complex multi-tone stimuli, one noise masker). A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker.


Assuntos
Percepção Auditiva , Ruído , Estimulação Acústica , Adulto , Feminino , Testes Auditivos , Humanos , Masculino , Adulto Jovem
20.
J Acoust Soc Am ; 127(4): 2479-97, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20370031

RESUMO

This study presents revision, extension, and evaluation of a binaural speech intelligibility model (Beutelmann, R., and Brand, T. (2006). J. Acoust. Soc. Am. 120, 331-342) that yields accurate predictions of speech reception thresholds (SRTs) in the presence of a stationary noise source at arbitrary azimuths and in different rooms. The modified model is based on an analytical expression of binaural unmasking for arbitrary input signals and is computationally more efficient, while maintaining the prediction quality of the original model. An extension for nonstationary interferers was realized by applying the model to short time frames of the input signals and averaging over the predicted SRT results. Binaural SRTs from 8 normal-hearing and 12 hearing-impaired subjects, incorporating all combinations of four rooms, three source setups, and three noise types were measured and compared to the model's predictions. Depending on the noise type, the parametric correlation coefficients between observed and predicted SRTs were 0.80-0.93 for normal-hearing subjects and 0.59-0.80 for hearing-impaired subjects. The mean absolute prediction error was 3 dB for the mean normal-hearing data and 4 dB for the individual hearing-impaired data. 70% of the variance of the SRTs of hearing-impaired subjects could be explained by the model, which is based only on the audiogram.


Assuntos
Perda Auditiva/psicologia , Modelos Psicológicos , Mascaramento Perceptivo , Pessoas com Deficiência Auditiva/psicologia , Detecção de Sinal Psicológico , Inteligibilidade da Fala , Acústica , Adulto , Idoso , Idoso de 80 Anos ou mais , Audiometria de Tons Puros , Limiar Auditivo , Estudos de Casos e Controles , Compreensão , Simulação por Computador , Arquitetura de Instituições de Saúde , Humanos , Pessoa de Meia-Idade , Ruído/efeitos adversos , Reprodutibilidade dos Testes , Localização de Som , Espectrografia do Som , Testes de Discriminação da Fala , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...