Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 28(1): 81-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35075288

RESUMO

Sickle cell disease (SCD) and transfusion-dependent ß-thalassemia (TDT) are the most prevalent monogenic disorders worldwide. Trial HGB-205 ( NCT02151526 ) aimed at evaluating gene therapy by autologous CD34+ cells transduced ex vivo with lentiviral vector BB305 that encodes the anti-sickling ßA-T87Q-globin expressed in the erythroid lineage. HGB-205 is a phase 1/2, open-label, single-arm, non-randomized interventional study of 2-year duration at a single center, followed by observation in long-term follow-up studies LTF-303 ( NCT02633943 ) and LTF-307 ( NCT04628585 ) for TDT and SCD, respectively. Inclusion and exclusion criteria were similar to those for allogeneic transplantation but restricted to patients lacking geno-identical, histocompatible donors. Four patients with TDT and three patients with SCD, ages 13-21 years, were treated after busulfan myeloablation 4.6-7.9 years ago, with a median follow-up of 4.5 years. Key primary endpoints included mortality, engraftment, replication-competent lentivirus and clonal dominance. No adverse events related to the drug product were observed. Clinical remission and remediation of biological hallmarks of the disease have been sustained in two of the three patients with SCD, and frequency of transfusions was reduced in the third. The patients with TDT are all transfusion free with improvement of dyserythropoiesis and iron overload.


Assuntos
Anemia Falciforme/terapia , Terapia Genética , Lentivirus/genética , Talassemia beta/terapia , Adolescente , Feminino , Terapia Genética/efeitos adversos , Humanos , Masculino , Resultado do Tratamento , Adulto Jovem
2.
N Engl J Med ; 378(16): 1479-1493, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669226

RESUMO

BACKGROUND: Donor availability and transplantation-related risks limit the broad use of allogeneic hematopoietic-cell transplantation in patients with transfusion-dependent ß-thalassemia. After previously establishing that lentiviral transfer of a marked ß-globin (ßA-T87Q) gene could substitute for long-term red-cell transfusions in a patient with ß-thalassemia, we wanted to evaluate the safety and efficacy of such gene therapy in patients with transfusion-dependent ß-thalassemia. METHODS: In two phase 1-2 studies, we obtained mobilized autologous CD34+ cells from 22 patients (12 to 35 years of age) with transfusion-dependent ß-thalassemia and transduced the cells ex vivo with LentiGlobin BB305 vector, which encodes adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q). The cells were then reinfused after the patients had undergone myeloablative busulfan conditioning. We subsequently monitored adverse events, vector integration, and levels of replication-competent lentivirus. Efficacy assessments included levels of total hemoglobin and HbAT87Q, transfusion requirements, and average vector copy number. RESULTS: At a median of 26 months (range, 15 to 42) after infusion of the gene-modified cells, all but 1 of the 13 patients who had a non-ß0/ß0 genotype had stopped receiving red-cell transfusions; the levels of HbAT87Q ranged from 3.4 to 10.0 g per deciliter, and the levels of total hemoglobin ranged from 8.2 to 13.7 g per deciliter. Correction of biologic markers of dyserythropoiesis was achieved in evaluated patients with hemoglobin levels near normal ranges. In 9 patients with a ß0/ß0 genotype or two copies of the IVS1-110 mutation, the median annualized transfusion volume was decreased by 73%, and red-cell transfusions were discontinued in 3 patients. Treatment-related adverse events were typical of those associated with autologous stem-cell transplantation. No clonal dominance related to vector integration was observed. CONCLUSIONS: Gene therapy with autologous CD34+ cells transduced with the BB305 vector reduced or eliminated the need for long-term red-cell transfusions in 22 patients with severe ß-thalassemia without serious adverse events related to the drug product. (Funded by Bluebird Bio and others; HGB-204 and HGB-205 ClinicalTrials.gov numbers, NCT01745120 and NCT02151526 .).


Assuntos
Terapia Genética , Globinas beta/genética , Talassemia beta/terapia , Adolescente , Adulto , Antígenos CD34 , Criança , Transfusão de Eritrócitos/estatística & dados numéricos , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Hemoglobinas/análise , Hemoglobinas/genética , Humanos , Lentivirus/genética , Masculino , Mutação , Transplante Autólogo , Adulto Jovem , Talassemia beta/genética
3.
N Engl J Med ; 376(9): 848-855, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249145

RESUMO

Sickle cell disease results from a homozygous missense mutation in the ß-globin gene that causes polymerization of hemoglobin S. Gene therapy for patients with this disorder is complicated by the complex cellular abnormalities and challenges in achieving effective, persistent inhibition of polymerization of hemoglobin S. We describe our first patient treated with lentiviral vector-mediated addition of an antisickling ß-globin gene into autologous hematopoietic stem cells. Adverse events were consistent with busulfan conditioning. Fifteen months after treatment, the level of therapeutic antisickling ß-globin remained high (approximately 50% of ß-like-globin chains) without recurrence of sickle crises and with correction of the biologic hallmarks of the disease. (Funded by Bluebird Bio and others; HGB-205 ClinicalTrials.gov number, NCT02151526 .).


Assuntos
Anemia Falciforme/terapia , Terapia Genética , Globinas beta/genética , Adolescente , Anemia Falciforme/sangue , Ensaios Clínicos como Assunto , Expressão Gênica , Terapia Genética/efeitos adversos , Vetores Genéticos , Hemoglobina A/metabolismo , Humanos , Lentivirus , Masculino
4.
Hum Gene Ther ; 27(2): 148-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26886832

RESUMO

ß-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal ß-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic ß-globin gene derivative (ß(AT87Q)-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. ß(AT87Q)-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with ß-thalassemia and sickle cell disease.


Assuntos
Anemia Falciforme/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Globinas beta/genética , Talassemia beta/terapia , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Ensaios Clínicos como Assunto , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células-Tronco Hematopoéticas , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Segurança do Paciente , Transgenes , Condicionamento Pré-Transplante/métodos , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/patologia
5.
Curr Gene Ther ; 15(1): 64-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25429463

RESUMO

A previously published clinical trial demonstrated the benefit of autologous CD34(+) cells transduced with a selfinactivating lentiviral vector (HPV569) containing an engineered ß-globin gene (ß(A-T87Q)-globin) in a subject with ß thalassemia major. This vector has been modified to increase transduction efficacy without compromising safety. In vitro analyses indicated that the changes resulted in both increased vector titers (3 to 4 fold) and increased transduction efficacy (2 to 3 fold). An in vivo study in which 58 ß-thalassemic mice were transplanted with vector- or mock-transduced syngenic bone marrow cells indicated sustained therapeutic efficacy. Secondary transplantations involving 108 recipients were performed to evaluate long-term safety. The six month study showed no hematological or biochemical toxicity. Integration site (IS) profile revealed an oligo/polyclonal hematopoietic reconstitution in the primary transplants and reduced clonality in secondary transplants. Tumor cells were detected in the secondary transplant mice in all treatment groups (including the control group), without statistical differences in the tumor incidence. Immunohistochemistry and quantitative PCR demonstrated that tumor cells were not derived from transduced donor cells. This comprehensive efficacy and safety data provided the basis for initiating two clinical trials with this second generation vector (BB305) in Europe and in the USA in patients with ß-thalassemia major and sickle cell disease.


Assuntos
Anemia Falciforme/terapia , Terapia Genética/métodos , Vetores Genéticos , Lentivirus/genética , Talassemia beta/terapia , Anemia Falciforme/genética , Animais , Antígenos CD34/metabolismo , Biologia Computacional , Dano ao DNA , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Transplante de Células-Tronco Hematopoéticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Talassemia beta/genética
6.
Nature ; 514(7521): 242-6, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25156257

RESUMO

ß-Thalassaemia major (ß-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of ß-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing ß-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human ß-TM erythroblasts, HSP70 interacts directly with free α-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of ß-TM erythroblasts, which may provide a rationale for new targeted therapies of ß-TM.


Assuntos
Eritroblastos/metabolismo , Eritropoese , Proteínas de Choque Térmico HSP70/metabolismo , alfa-Globinas/metabolismo , Talassemia beta/sangue , Talassemia beta/metabolismo , Apoptose , Medula Óssea/metabolismo , Caspase 3/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Células Cultivadas , Citoplasma/metabolismo , Ativação Enzimática , Eritroblastos/citologia , Eritroblastos/patologia , Eritropoese/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Humanos , Cinética , Terapia de Alvo Molecular , Ligação Proteica , Redobramento de Proteína , Talassemia beta/patologia
7.
Nat Med ; 20(4): 398-407, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658077

RESUMO

The pathophysiology of ineffective erythropoiesis in ß-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of ß-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with ß-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in ß-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas-Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in ß-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Eritroblastos/metabolismo , Eritropoese/efeitos dos fármacos , Fatores de Diferenciação de Crescimento/antagonistas & inibidores , Hematínicos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Talassemia beta/metabolismo , Animais , Apoptose/fisiologia , Comunicação Autócrina/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Proteína Ligante Fas , Amplificação de Genes/fisiologia , Fatores de Diferenciação de Crescimento/metabolismo , Ligantes , Camundongos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio , Transdução de Sinais , Receptor fas
8.
Methods Enzymol ; 507: 109-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22365771

RESUMO

Patients with ß-thalassemia major require lifelong transfusions and iron chelation, regardless of the type of causative mutations (e.g., ß°, ß(E)/ß°). The only available curative therapy is allogeneic hematopoietic transplantation, although most patients do not have an HLA-matched, geno-identical donor, and those who do still risk graft-versus-host disease. Hence, gene therapy by ex vivo transfer of a functional ß-globin gene is an attractive novel therapeutic modality. In ß-thalassemia, transfer of a therapeutic globin gene does not confer a selective advantage to transduced stem cells, and complex DNA regulatory sequences have to be present within the transfer vector for proper expression. This is why lentiviral vectors have proven especially suited for this application, and the first Phase I/II human clinical trial was initiated. Here, we report on the first gene therapy patient with severe ß(E)/ß°-thalassemia, who has become transfusion-independent, and provide methods and protocols used in the context of this clinical trial.


Assuntos
Terapia Genética , Lentivirus/genética , Talassemia beta/terapia , Adolescente , Transplante de Medula Óssea , Técnicas de Cultura de Células , Células Cultivadas , Ensaios Clínicos como Assunto , Clonagem Molecular , Genes Virais , Engenharia Genética , Vetores Genéticos , Humanos , Lentivirus/isolamento & purificação , Masculino , Projetos de Pesquisa , Resultado do Tratamento
9.
Cell ; 145(3): 398-409, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21529713

RESUMO

Sickle human hemoglobin (Hb) confers a survival advantage to individuals living in endemic areas of malaria, the disease caused by Plasmodium infection. As demonstrated hereby, mice expressing sickle Hb do not succumb to experimental cerebral malaria (ECM). This protective effect is exerted irrespectively of parasite load, revealing that sickle Hb confers host tolerance to Plasmodium infection. Sickle Hb induces the expression of heme oxygenase-1 (HO-1) in hematopoietic cells, via a mechanism involving the transcription factor NF-E2-related factor 2 (Nrf2). Carbon monoxide (CO), a byproduct of heme catabolism by HO-1, prevents further accumulation of circulating free heme after Plasmodium infection, suppressing the pathogenesis of ECM. Moreover, sickle Hb inhibits activation and/or expansion of pathogenic CD8(+) T cells recognizing antigens expressed by Plasmodium, an immunoregulatory effect that does not involve Nrf2 and/or HO-1. Our findings provide insight into molecular mechanisms via which sickle Hb confers host tolerance to severe forms of malaria.


Assuntos
Hemoglobina Falciforme/imunologia , Malária/imunologia , Plasmodium berghei , Animais , Linfócitos T CD8-Positivos/imunologia , Monóxido de Carbono/metabolismo , Quimiocinas/metabolismo , Cruzamentos Genéticos , Modelos Animais de Doenças , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Malária/fisiopatologia , Malária Cerebral/imunologia , Malária Cerebral/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo
10.
Mol Ther ; 19(7): 1273-86, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21386821

RESUMO

A lentiviral vector encoding ß-globin flanked by insulator elements has been used to treat ß-thalassemia (ß-Thal) successfully in one human subject. However, a clonal expansion was observed after integration in the HMGA2 locus, raising the question of how commonly lentiviral integration would be associated with possible insertional activation. Here, we report correcting ß-Thal in a murine model using the same vector and a busulfan-conditioning regimen, allowing us to investigate efficacy and clonal evolution at 9.2 months after transplantation of bone marrow cells. The five gene-corrected recipient mice showed near normal levels of hemoglobin, reduced accumulation of reticulocytes, and normalization of spleen weights. Mapping of integration sites pretransplantation showed the expected favored integration in transcription units. The numbers of gene-corrected long-term repopulating cells deduced from the numbers of unique integrants indicated oligoclonal reconstitution. Clonal abundance was quantified using a Mu transposon-mediated method, indicating that clones with integration sites near growth-control genes were not enriched during growth. No integration sites involving HMGA2 were detected. Cells containing integration sites in genes became less common after prolonged growth, suggesting negative selection. Thus, ß-Thal gene correction in mice can be achieved without expansion of cells harboring vectors integrated near genes involved in growth control.


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , Talassemia beta/terapia , Animais , Transplante de Medula Óssea , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Proteína HMGA2/genética , Camundongos , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo
11.
Blood ; 117(20): 5321-31, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21436071

RESUMO

A challenge for gene therapy of genetic diseases is to maintain corrected cell populations in subjects undergoing transplantation in cases in which the corrected cells do not have intrinsic selective advantage over nontransduced cells. For inherited hematopoietic disorders, limitations include inefficient transduction of stem cell pools, the requirement for toxic myelosuppression, and a lack of optimal methods for cell selection after transduction. Here, we have designed a lentiviral vector that encodes human ß-globin and a truncated erythropoietin receptor, both under erythroid-specific transcriptional control. This truncated receptor confers enhanced sensitivity to erythropoietin and a benign course in human carriers. Transplantation of marrow transduced with the vector into syngenic thalassemic mice, which have elevated plasma erythropoietin levels, resulted in long-term correction of the disease even at low ratios of transduced/untransduced cells. Amplification of the red over the white blood cell lineages was self-controlled and averaged ∼ 100-fold instead of ∼ 5-fold for ß-globin expression alone. There was no detectable amplification of white blood cells or alteration of hematopoietic homeostasis. Notwithstanding legitimate safety concerns in the context of randomly integrating vectors, this approach may prove especially valuable in combination with targeted integration or in situ homologous recombination/repair and may lower the required level of pretransplantation myelosuppression.


Assuntos
Terapia Genética/métodos , Talassemia beta/terapia , Animais , Sequência de Bases , Primers do DNA/genética , Modelos Animais de Doenças , Eritropoese/genética , Expressão Gênica , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Homeostase , Humanos , Lentivirus/genética , Camundongos , Receptores da Eritropoetina/genética , Proteínas Recombinantes/genética , Transplante Isogênico , Globinas beta/genética , Talassemia beta/sangue , Talassemia beta/genética
12.
Haematologica ; 96(1): 24-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20851863

RESUMO

BACKGROUND: Sickle cell disease, a genetic red cell disorder inherited in an autosomal recessive manner, occurs throughout the world. Hepatic dysfunction and liver damage may be present in sickle cell disease, but the pathogenesis of these conditions is only partially understood. DESIGN AND METHODS: Transgenic mice with sickle cell disease (SAD mice) and wild-type mice were exposed to an ischemic/reperfusion stress. The following parameters were evaluated: hematologic profile, transaminase and bilirubin levels, liver histopathology, and mRNA levels of nuclear factor-κB p65, endothelial nitric oxide synthase, inducible nitric oxide synthase, heme oxygenase-1 and phosphodiesterase-1, -2, -3, and -4 genes in hepatocytes obtained by laser-capture microdissection. Immunoblotting was used to analyze the expression of the following proteins: nuclear factor-κB p65 and phospho-nuclear factor-κB p65, heme oxygenase-1, biliverdin reductase, heat shock protein-70, heat shock protein-27 and peroxiredoxin-6. A subgroup of SAD mice was treated with the phosphodiesterase-4 inhibitor rolipram (30 mg/Kg/day by gavage) during the ischemic/reperfusion protocol. RESULTS: In SAD mice the ischemic/reperfusion stress induced liver damage compatible with sickle cell disease hepatopathy, which was associated with: (i) lack of hypoxia-induced nuclear factor-κB p65 activation; (ii) imbalance in the endothelial/inducible nitric oxide synthase response to ischemic/reperfusion stress; (iii) lack of hypoxia-induced increased expression of heme oxygenase-1/biliverdin reductase paralleled by a compensatory increased expression of heat shock proteins 70 and 27 and peroxiredoxin-6; and (iv) up-regulation of the phosphodiesterase-1, -2, -3, and -4 genes. In SAD mice the phosphodiesterase-4 inhibitor rolipram attenuated the ischemic/reperfusion-related microcirculatory dysfunction, reduced the inflammatory cell infiltration and induced the heme oxygenase-1/biliverdin reductase cytoprotective systems. CONCLUSIONS: In SAD mice, sickle cell hepatopathy is associated with perturbed nuclear factor-κB p65 signaling with an imbalance of endothelial/inducible nitric oxide synthase levels, lack of heme oxygenase-1/biliverdin reductase expression and up-regulation of two novel cytoprotective systems: heat shock protein-27 and peroxiredoxin-6.


Assuntos
Anemia Falciforme/etiologia , Citoproteção , Hepatopatias/etiologia , Hepatopatias/patologia , Traumatismo por Reperfusão/complicações , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Animais , Western Blotting , Células Cultivadas , Feminino , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , RNA Mensageiro/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Nature ; 467(7313): 318-22, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20844535

RESUMO

The ß-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of ß-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound ß(E)/ß(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The ß(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated ß(E)-globin with partial instability. When this is compounded with a non-functional ß(0) allele, a profound decrease in ß-globin synthesis results, and approximately half of ß(E)/ß(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral ß-globin gene transfer, an adult patient with severe ß(E)/ß(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded ß-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.


Assuntos
Transfusão de Sangue , Terapia Genética , Proteína HMGA2/metabolismo , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/terapia , Adolescente , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Pré-Escolar , Células Clonais/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteína HMGA2/genética , Homeostase , Humanos , Lentivirus/genética , Masculino , MicroRNAs/genética , Especificidade de Órgãos , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Tempo , Ativação Transcricional , Adulto Jovem , Talassemia beta/metabolismo
14.
J Clin Invest ; 118(5): 1924-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18382768

RESUMO

Patients with sickle-cell disease (SCD) suffer from tissue damage and life-threatening complications caused by vasoocclusive crisis (VOC). Endothelin receptors (ETRs) are mediators of one of the most potent vasoconstrictor pathways in mammals, but the relationship between vasoconstriction and VOC is not well understood. We report here that pharmacological inhibition of ETRs prevented hypoxia-induced acute VOC and organ damage in a mouse model of SCD. An in vivo ultrasonographic study of renal hemodynamics showed a substantial increase in endothelin-mediated vascular resistance during hypoxia/reoxygenation-induced VOC. This increase was reversed by administration of the dual ETR antagonist (ETRA) bosentan, which had pleiotropic beneficial effects in vivo. It prevented renal and pulmonary microvascular congestion, systemic inflammation, dense rbc formation, and infiltration of activated neutrophils into tissues with subsequent nitrative stress. Bosentan also prevented death of sickle-cell mice exposed to a severe hypoxic challenge. These findings in mice suggest that ETRA could be a potential new therapy for SCD, as it may prevent acute VOC and limit organ damage in sickle-cell patients.


Assuntos
Anemia Falciforme , Anti-Hipertensivos/uso terapêutico , Antagonistas dos Receptores de Endotelina , Hipóxia , Receptores de Endotelina/metabolismo , Sulfonamidas/uso terapêutico , Anemia Falciforme/metabolismo , Anemia Falciforme/mortalidade , Anemia Falciforme/patologia , Anemia Falciforme/fisiopatologia , Animais , Bosentana , Modelos Animais de Doenças , Endotelina-1/genética , Endotelina-1/metabolismo , Hemodinâmica , Humanos , Rim/citologia , Rim/metabolismo , Rim/patologia , Rim/fisiologia , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Receptores de Endotelina/genética , Fluxo Sanguíneo Regional , Circulação Renal/fisiologia , Vasoconstrição/fisiologia
15.
Hum Gene Ther ; 19(4): 331-42, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18341422

RESUMO

Numerous studies using erythropoietin (EPO) gene delivery vectors, either viral or nonviral, have shown uncontrolled EPO expression leading to transient or sustained erythrocytosis and, more recently, severe autoimmune anemia. Therefore, there is a need to develop other EPO gene delivery systems that allow sustained and adjustable expression of EPO. We have examined a new approach of delivering plasmid encoding mouse EPO cDNA into mouse skeletal muscle, using an amphiphilic block copolymer. Repeated injections of low doses of block copolymer-EPOcDNA formulations increased hematocrit in a dose-dependent manner for more than 9 months, without any initial overshoot. Low doses of block copolymer-EPOcDNA formulations prevented autoimmune anemia in immunocompetent Swiss mice and prevented or reversed chronic anemia in an acquired mouse model of renal failure. We conclude that repeated injections of low doses of block copolymer-DNA formulations that do not induce (1) inflammation at the injection site, (2) overexpression of EPO, or (3) the production of anti-EPO neutralizing auto-antibodies hold promise for in vivo expression of therapeutic proteins, in particular for systemic delivery.


Assuntos
Anemia/complicações , Anemia/terapia , Eritropoetina/genética , Eritropoetina/uso terapêutico , Terapia Genética , Plasmídeos/genética , Insuficiência Renal/complicações , Anemia/induzido quimicamente , Anemia/genética , Animais , Creatinina/sangue , Modelos Animais de Doenças , Eritropoetina/imunologia , Eritropoetina/metabolismo , Feminino , Inflamação/patologia , Injeções Intramusculares , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Plasmídeos/administração & dosagem , Polietilenoglicóis/farmacologia , Contagem de Reticulócitos , Ureia/sangue
16.
Genet Vaccines Ther ; 6: 10, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18334017

RESUMO

BACKGROUND: In situ production of a secreted therapeutic protein is one of the major gene therapy applications. Nevertheless, the plasmatic secretion peak of transgenic protein may be deleterious in many gene therapy applications including Epo gene therapy. Epo gene transfer appears to be a promising alternative to recombinant Epo therapy for severe anaemia treatment despite polycythemia was reached in many previous studies. Therefore, an accurate level of transgene expression is required for Epo application safety. The aim of this study was to adapt posology and administration schedule of a chosen therapeutic gene to avoid this potentially toxic plasmatic peak and maintain treatment efficiency. The therapeutic potential of repeated muscular electrotransfer of light Epo-plasmid doses was evaluated for anaemia treatment in beta-thalassemic mice. METHODS: Muscular electrotransfer of 1 microg, 1.5 microg, 2 microg, 4 microg or 6 microg of Epo-plasmid was performed in beta-thalassemic mice. Electrotransfer was repeated first after 3.5 or 5 weeks first as a initiating dose and then according to hematocrit evolution. RESULTS: Muscular electrotransfer of the 1.5 microg Epo-plasmid dose repeated first after 5 weeks and then every 3 months was sufficient to restore a subnormal hematrocrit in beta-thalassemic mice for more than 9 months. CONCLUSION: This strategy led to efficient, long-lasting and non-toxic treatment of beta-thalassemic mouse anaemia avoiding the deleterious initial hematocrit peak and maintaining a normal hematocrit with small fluctuation amplitude. This repeat delivery protocol of light doses of therapeutic gene could be applied to a wide variety of candidate genes as it leads to therapeutic effect reiterations and increases safety by allowing careful therapeutic adjustments.

17.
FASEB J ; 22(6): 1849-60, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18245171

RESUMO

Pulmonary arterial hypertension (PAH) is one of the leading causes of morbidity and mortality in adult patients with sickle cell disease (SCD). Here, we developed a model to study the early stage of PAH in SCD. We exposed wild-type and transgenic sickle cell SAD (Hbb(s)/Hbb(s)) mice to hypoxia (8% O(2)) for 7 days. Prolonged hypoxia in SAD mice only induced 1) increased neutrophil count in both bronchoalveolar lavage (BAL) and peripheral circulation; 2) increased BAL IL1beta, IL10, IL6, and TNF-alpha; and 3) up-regulation of the genes endothelin-1, cyclo-oxygenase-2, angiotensin-converting-enzyme, and IL-1beta, suggesting that amplified inflammatory response and activation of the endothelin-1 system may contribute to the early phase of PAH in SCD. Since phosphodiesterases (PDEs) are involved in pulmonary vascular tone regulation, we evaluated gene expression of phosphodiesterase-4 (PDE-4) isoforms and of PDE-1, -2, -3, -7, -8, which are the main cyclic-adenosine-monophosphate hydrolyzing enzymes. In SAD mouse lungs, prolonged hypoxia significantly increased PDE-4 and -1 gene expressions. The PDE-4 inhibitor, rolipram, prevented the hypoxia-induced PDE-4 and -1 gene up-regulation and interfered with the development of PAH, most likely through modulation of both vascular tone and inflammatory factors. This finding supports a possible therapeutic use of PDEs inhibitors in the earlier phases of PAH in SCD.


Assuntos
Anemia Falciforme/complicações , Hipertensão Pulmonar/tratamento farmacológico , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/farmacologia , Anemia Falciforme/tratamento farmacológico , Animais , Modelos Animais de Doenças , Hipóxia , Camundongos , Camundongos Transgênicos , Inibidores de Fosfodiesterase/uso terapêutico , Rolipram/farmacologia , Regulação para Cima/genética
18.
Exp Hematol ; 36(4): 412-23, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18295963

RESUMO

OBJECTIVE: To investigate whether expression of a membrane-anchored form of erythropoietin (MbEpo) results in self-controlled, autocrine proliferation, and differentiation of erythroid cells. This would provide a possible approach to the selective expansion of genetically corrected erythroid cells in gene-therapy protocols. MATERIALS AND METHODS: We designed retroviral vectors encoding MbEpo or secreted erythropoietin (Epo) and enhanced green fluorescent protein. Several Epo-dependent cell lines were transduced and their proliferative capacity evaluated. This approach was also assessed in human bone marrow CD34(+) cells and mouse bone marrow transplants. RESULTS: Retroviral vector-mediated MbEpo expression induced autocrine proliferation of the Epo-dependent cell lines DAE7 and UT7/Epo. However, it blocked the Epo receptor (EpoR)-induced activation of granulocyte macrophage colony-stimulating factor-dependent UT7/GM cells and the erythroid differentiation of both human hematopoietic cells in vitro and of mouse bone marrow cells in transplant experiments. MbEpo was present at the surface of UT7/GM cells. It did not affect the membrane localization of the EpoR, but prevented its normal Epo-dependent phosphorylation and internalization. By contrast to these inhibitory effects, a higher rate of EpoR replenishment in UT7/GM cells before MbEpo production rendered cell proliferation independent of exogenous growth factor. CONCLUSIONS: Activation of EpoR gene expression before MbEpo-induced EpoR activation is essential for activation or inhibition of growth and differentiation of Epo-dependent cell lines. It will be necessary to delay MbEpo expression in late erythroid progenitors until after EpoR gene activation, for erythroid cell expansion to be achieved in vivo.


Assuntos
Eritropoetina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores da Eritropoetina/metabolismo , Animais , Transplante de Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Eritropoetina/genética , Eritropoetina/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores de Superfície Celular/efeitos dos fármacos , Receptores da Eritropoetina/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Regulação para Cima
19.
Proteomics Clin Appl ; 2(5): 706-19, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-21136868

RESUMO

Sickle cell disease (SCD) is an autosomal recessive genetic red cell disorder characterized by the production of a defective form of hemoglobin, hemoglobin-S, that is worldwide-distributed. The acute clinical manifestations of SCD are related to hemoglobin cyclic-polymerization and to the generation of rigid, dense red blood cells (RBCs). We studied RBCs membrane proteome from human sickle RBCs, fractioned according to density compared to normal RBCs. 2-DE followed by MS analysis was carried out. We identified 65 proteins differently expressed, divided into five major clusters according to their functions: (i) membrane-cytoskeleton proteins; (ii) metabolic enzymes; (iii) ubiquitin-proteasome-system; (iv) flotillins; (v) chaperones. HSP27, HSP70 and peroxiredoxin-II (Prx-II) showed the most relevant changes. They were differently recruited to sickle RBCs membrane in response to in vitro hypoxia. Potential markers were then validated in a transgenic-mouse model for SCD, the SAD mice, exposed to hypoxia mimicking acute SCD vaso-occlusive-crisis (VOCs); we found that HSP70 and HSP27 bound to RBCs membrane respectively after 12 h and 48 h of hypoxia, while Prx-II membrane binding was modulated during hypoxia. Our data indicate that HSP27 and HSP70 play a novel role as RBCs membrane protein protectors and as possibly new markers of severity of RBCs membrane damage during acute VOCs.

20.
PLoS Med ; 4(3): e90, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17388661

RESUMO

BACKGROUND: In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown. METHODS AND FINDINGS: In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m(2) epirubicin and 1,200 mg/m(2) cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a transcriptional profile associated with complete responses among TP53 mutant tumors. In patients with unresponsive tumors, mutant TP53 status predicted significantly shorter overall survival. The 15 patients with responsive TP53-mutant tumors, however, had a favorable outcome, suggesting that this chemotherapy regimen can overcome the poor prognosis generally associated with mutant TP53 status. CONCLUSIONS: This study demonstrates that, in noninflammatory breast cancers, TP53 status is a key predictive factor for response to this dose-dense epirubicin-cyclophosphamide regimen and further suggests that the basal subtype is exquisitely sensitive to this association. Given the well-established predictive value of complete responses for long-term survival and the poor prognosis of basal and TP53-mutant tumors treated with other regimens, this chemotherapy could be particularly suited for breast cancer patients with a mutant TP53, particularly those with basal features.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína Supressora de Tumor p53/genética , Ciclofosfamida/administração & dosagem , Epirubicina/administração & dosagem , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...