Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 369(1643): 20130193, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733948

RESUMO

The African protected area (PA) network has the potential to act as a set of functionally interconnected patches that conserve meta-populations of mammal species, but individual PAs are vulnerable to habitat change which may disrupt connectivity and increase extinction risk. Individual PAs have different roles in maintaining connectivity, depending on their size and location. We measured their contribution to network connectivity (irreplaceability) for carnivores and ungulates and combined it with a measure of vulnerability based on a 30-year trend in remotely sensed vegetation cover (Normalized Difference Vegetation Index). Highly irreplaceable PAs occurred mainly in southern and eastern Africa. Vegetation cover change was generally faster outside than inside PAs and particularly so in southern Africa. The extent of change increased with the distance from PAs. About 5% of highly irreplaceable PAs experienced a faster vegetation cover loss than their surroundings, thus requiring particular conservation attention. Our analysis identified PAs at risk whose isolation would disrupt the connectivity of the PA network for large mammals. This is an example of how ecological spatial modelling can be combined with large-scale remote sensing data to investigate how land cover change may affect ecological processes and species conservation.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Ecossistema , Mamíferos , Modelos Teóricos , África Oriental , Animais , Simulação por Computador , Imagens de Satélites
2.
Mov Ecol ; 2(1): 26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25709834

RESUMO

BACKGROUND: Linking animal movements to landscape features is critical to identify factors that shape the spatial behaviour of animals. Habitat selection is led by behavioural decisions and is shaped by the environment, therefore the landscape is crucial for the analysis. Land cover classification based on ground survey and remote sensing data sets are an established approach to define landscapes for habitat selection analysis. We investigate an approach for analysing habitat use using continuous land cover information and spatial metrics. This approach uses a continuous representation of the landscape using percentage cover of a chosen land cover type instead of discrete classes. This approach, fractional cover, captures spatial heterogeneity within classes and is therefore capable to provide a more distinct representation of the landscape. The variation in home range sizes is analysed using fractional cover and spatial metrics in conjunction with mixed effect models on red deer position data in the Bohemian Forest, compared over multiple spatio-temporal scales. RESULTS: We analysed forest fractional cover and a texture metric within each home range showing that variance of fractional cover values and texture explain much of variation in home range sizes. The results show a hump-shaped relationship, leading to smaller home ranges when forest fractional cover is very homogeneous or highly heterogeneous, while intermediate stages lead to larger home ranges. CONCLUSION: The application of continuous land cover information in conjunction with spatial metrics proved to be valuable for the explanation of home-range sizes of red deer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...