Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 36(17): 3434-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21886235

RESUMO

We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects.

2.
Nature ; 466(7303): 217-20, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20613838

RESUMO

A source of triggered entangled photon pairs is a key component in quantum information science; it is needed to implement functions such as linear quantum computation, entanglement swapping and quantum teleportation. Generation of polarization entangled photon pairs can be obtained through parametric conversion in nonlinear optical media or by making use of the radiative decay of two electron-hole pairs trapped in a semiconductor quantum dot. Today, these sources operate at a very low rate, below 0.01 photon pairs per excitation pulse, which strongly limits their applications. For systems based on parametric conversion, this low rate is intrinsically due to the Poissonian statistics of the source. Conversely, a quantum dot can emit a single pair of entangled photons with a probability near unity but suffers from a naturally very low extraction efficiency. Here we show that this drawback can be overcome by coupling an optical cavity in the form of a 'photonic molecule' to a single quantum dot. Two coupled identical pillars-the photonic molecule-were etched in a semiconductor planar microcavity, using an optical lithography method that ensures a deterministic coupling to the biexciton and exciton energy states of a pre-selected quantum dot. The Purcell effect ensures that most entangled photon pairs are emitted into two cavity modes, while improving the indistinguishability of the two optical recombination paths. A polarization entangled photon pair rate of 0.12 per excitation pulse (with a concurrence of 0.34) is collected in the first lens. Our results open the way towards the fabrication of solid state triggered sources of entangled photon pairs, with an overall (creation and collection) efficiency of 80%.

3.
Opt Express ; 17(5): 3165-72, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259153

RESUMO

Band-edge photonic crystal lasers were fabricated and their temporal characteristics were minutely analyzed using a high resolution up-conversion system. The InGaAs/InP photonic crystal laser operates at room temperature at 1.55 microm with turn on time ranging from 17ps to 30ps.

4.
Phys Rev Lett ; 103(20): 207403, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-20366011

RESUMO

In a coupled quantum-dot-nanocavity system, the photoluminescence from an off-resonance cavity mode exhibits strong quantum correlations with the quantum-dot transitions, even though its autocorrelation function is classical. Using new pump-power dependent photon-correlation measurements, we demonstrate that this seemingly contradictory observation that has so far defied an explanation stems from cascaded cavity photon emission in transitions between excited multiexciton states. The mesoscopic nature of quantum-dot confinement ensures the presence of a quasicontinuum of excitonic transitions, part of which overlaps with the cavity resonance.

5.
Phys Rev Lett ; 89(18): 187901, 2002 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-12398636

RESUMO

We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...