Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670629

RESUMO

OBJECTIVE: The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN: We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS: In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS: Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.

2.
Mol Genet Metab ; 140(3): 107705, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837864

RESUMO

PURPOSE: Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer unprecedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, as well as standardized procedures. Especially those topics with a huge body of data may benefit from data science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS-assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and define a workflow. METHODS: Recognized scholars with expertise on myokines were invited to provide a list of the most important myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert-led discussion has been then integrated with an DS-led approach to provide further perspectives. RESULTS: Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS tools were described as present in the cargo of extracellular vesicles. CONCLUSIONS: Including both supervised and unsupervised learning methods, as well as encompassing algorithms focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting original scenarios are worth exploring as in silico recommendations to be integrated with experts' ideas for optimizing molecular studies.


Assuntos
Músculo Esquelético , Secretoma , Humanos , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Biologia Computacional/métodos
3.
Diagnostics (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685358

RESUMO

Neuroendocrine neoplasms (NENs) are a heterogeneous group of diseases that are characterized by different behavior and clinical manifestations. The diagnosis and management of this group of tumors are challenging due to tumor complexity and lack of precise and widely validated biomarkers. Indeed, the current circulating mono-analyte biomarkers (such as chromogranin A) are ineffective in describing such complex tumors due to their poor sensitivity and specificity. In contrast, multi-analytical circulating biomarkers (including NETest) are emerging as more effective tools to determine the real-time profile of the disease, both in terms of accurate diagnosis and effective treatment. In this review, we will analyze the capabilities and limitations of different circulating biomarkers focusing on three relevant questions: (1) accurate and early diagnosis; (2) monitoring of disease progression and response to therapy; and (3) detection of early relapse.

4.
Pathol Res Pract ; 248: 154674, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37454491

RESUMO

BACKGROUND: Intestinal neuroendocrine tumours (I-NETs) represent a non-negligible entity among intestinal neoplasms, with metastatic spreading usually present at the time of diagnosis. In this context, effective molecular actionable targets are still lacking. Through transcriptome analysis, we aim at refining the molecular taxonomy of I-NETs, also providing insights towards the identification of new therapeutic vulnerabilities. MATERIALS AND METHODS: A retrospective series of 38 primary sporadic, surgically-resected I-NETs were assessed for transcriptome profiling of 20,815 genes. RESULTS: Transcriptome analysis detected 643 highly expressed genes. Unsupervised hierarchical clustering, differential expression analysis and gene set enriched analysis identified three different tumour clusters (CL): CL-A, CL-B, CL-C. CL-A showed the overexpression of ARGFX, BIRC8, NANOS2, and SSTR4 genes. Its most characterizing signatures were those related to cell-junctions, and activation of mTOR and WNT pathway. CL-A was also enriched in T CD8 + lymphocytes. CL-B showed the overexpression of PCSK1, QPCT, ST18, and TPH1 genes. Its most characterizing signatures were those related to adipogenesis, neuroendocrine metabolism, and splice site machinery-related processes. CL-B was also enriched in T CD4 + lymphocytes. CL-C showed the overexpression of ALB, ANG, ARG1, and HP genes. Its most characterizing signatures were complement/coagulation and xenobiotic metabolism. CL-C was also enriched in M1/2 macrophages. These CL-based differences may have therapeutic implications in refining the management of I-NET patients. At last, we described a specific gene-set for differentiating I-NET from pancreatic NET. DISCUSSION: Our data represent an additional step for refining the molecular taxonomy of I-NET, identifying novel transcriptome subgroups with different biology and therapeutic opportunities.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Estudos Retrospectivos , Perfilação da Expressão Gênica , Intestinos/patologia , Transcriptoma , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia
5.
Cancers (Basel) ; 15(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36900245

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) and distal cholangiocarcinoma (dCCA) are very aggressive tumors with a high mortality rate. Pancreas and distal bile ducts share a common embryonic development. Hence, PDAC and dCCA exhibit similar histological features that make a differential diagnosis during routine diagnostic practice challenging. However, there are also significant differences, with potential clinical implications. Even if PDAC and dCCA are generally associated with poor survival, patients with dCCA seem to present a better prognosis. Moreover, although precision oncology-based approaches are still limited in both entities, their most important targets are different and include alterations affecting BRCA1/2 and related genes in PDAC, as well as HER2 amplification in dCCA. Along this line, microsatellite instability represents a potential contact point in terms of tailored treatments, but its prevalence is very low in both tumor types. This review aims at defining the most important similarities and differences in terms of clinicopathological and molecular features between these two entities, also discussing the main theranostic implications derived from this challenging differential diagnosis.

6.
Biomedicines ; 11(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36830839

RESUMO

Pancreatic neuroendocrine neoplasms (PanNENs) are rare neoplasms arising from islets of the Langerhans in the pancreas. They can be divided into two groups, based on peptide hormone secretion, functioning and nonfunctioning PanNENs. The first group is characterized by different secreted peptides causing specific syndromes and is further classified into subgroups: insulinoma, gastrinoma, glucagonoma, somatostatinoma, VIPoma and tumors producing serotonin and adrenocorticotrophic hormone. Conversely, the second group does not release peptides and is usually associated with a worse prognosis. Today, although the efforts to improve the therapeutic approaches, surgery remains the only curative treatment for patients with PanNENs. The development of high-throughput techniques has increased the molecular knowledge of PanNENs, thereby allowing us to understand better the molecular biology and potential therapeutic vulnerabilities of PanNENs. Although enormous advancements in therapeutic and molecular aspects of PanNENs have been achieved, there is poor knowledge about each subgroup of functioning PanNENs.Therefore, we believe that combining high-throughput platforms with new diagnostic tools will allow for the efficient characterization of the main differences among the subgroups of functioning PanNENs. In this narrative review, we summarize the current landscape regarding diagnosis, molecular profiling and treatment, and we discuss the future perspectives of functioning PanNENs.

7.
J Gerontol A Biol Sci Med Sci ; 77(11): 2195-2206, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35973816

RESUMO

The present work aims to link the redox and cell-centric theories of chronic processes in human biology, focusing on aging. A synthetic overview of cellular redox pathways will be integrated by the concept of hormesis, which disruption leads to several physiopathological processes. The onset of age-related diseases due to the restriction of homeodynamic capacity will be herein considered in a redox fashion. Up-to-date arguments on hormetic agents, such as geroprotectors, dietary interventions, and physical exercise are refining the presented theoretical framework, integrated by insights from extracellular vesicles, microbiota, pollutants, and timing mechanisms. The broad concepts of exposome encompass the redox-based alteration of cellular hormesis for providing meaningful perspectives on redox biogerontology.


Assuntos
Poluentes Ambientais , Geriatria , Humanos , Hormese , Oxirredução , Envelhecimento/metabolismo
8.
Histochem Cell Biol ; 157(5): 547-556, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35201398

RESUMO

Growth-associated protein 43 (GAP43) is found in skeletal muscle, localized near the calcium release units. In interaction with calmodulin (CaM), it indirectly modulates the activity of dihydropyridine and ryanodine Ca2+ channels. GAP43-CaM interaction plays a key role in intracellular Ca2+ homeostasis and, consequently, in skeletal muscle activity. The control of intracellular Ca2+ signaling is also an important functional requisite in cardiac physiology. The aim of this study is to define the impact of GAP43 on cardiac tissue at macroscopic and cellular levels, using GAP43 knockout (GAP43-/-) newborn C57/BL6 mice. Hearts from newborn GAP43-/- mice were heavier than hearts from wild-type (WT) ones. In these GAP43-/- hearts, histological section analyses revealed a thicker ventricular wall and interventricular septum with a reduced ventricular chamber area. In addition, increased collagen deposits between fibers and increased expression levels of myosin were observed in hearts from GAP43-/- mice. Cardiac tropism and rhythm are controlled by multiple intrinsic and extrinsic factors, including cellular events such those linked to intracellular Ca2+ dynamics, in which GAP43 plays a role. Our data revealed that, in the absence of GAP43, there were cardiac morphological alterations and signs of hypertrophy, suggesting that GAP43 could play a role in the functional processes of the whole cardiac muscle. This paves the way for further studies investigating GAP43 involvement in signaling dynamics at the cellular level.


Assuntos
Calmodulina , Remodelação Ventricular , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteína GAP-43/metabolismo , Coração , Hipertrofia/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo
9.
Oxid Med Cell Longev ; 2022: 7714542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047109

RESUMO

This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Oxirredução
10.
Oxid Med Cell Longev ; 2021: 9951113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986919

RESUMO

Microgravity affects human cardiovascular function inducing heart rhythm disturbances and even cardiac atrophy. The mechanisms triggered by microgravity and the search for protection strategies are difficult to be investigated in vivo. This study is aimed at investigating the effects induced by simulated microgravity on a cardiomyocyte-like phenotype. The Random Positioning Machine (RPM), set in a CO2 incubator, was used to simulate microgravity, and H9C2 cell line was used as the cardiomyocyte-like model. H9C2 cells were exposed to simulated microgravity up to 96 h, showing a slower cell proliferation rate and lower metabolic activity in comparison to cell grown at earth gravity. In exposed cells, these effects were accompanied by increased levels of intracellular reactive oxygen species (ROS), cytosolic Ca2+, and mitochondrial superoxide anion. Protein carbonyls, markers of protein oxidation, were significantly increased after the first 48 h of exposition in the RPM. In these conditions, the presence of an antioxidant, the N-acetylcysteine (NAC), counteracted the effects induced by the simulated microgravity. In conclusion, these data suggest that simulated microgravity triggers a concomitant increase of intracellular ROS and Ca2+ levels and affects cell metabolic activity which in turn could be responsible for the slower proliferative rate. Nevertheless, the very low number of detectable dead cells and, more interestingly, the protective effect of NA, demonstrate that simulated microgravity does not have "an irreversible toxic effect" but, affecting the oxidative balance, results in a transient slowdown of proliferation.


Assuntos
Miócitos Cardíacos/metabolismo , Estresse Oxidativo/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...