Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 67(1): 38-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36545957

RESUMO

We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO4 in longitudinal magnetic fields. Our experiments reveal a quasi-plateau state induced by quantum fluctuations. This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap. In the high field regime where the quantum fluctuations are largely suppressed, we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity. Through detailed semi-classical calculations, we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.

2.
Nat Commun ; 11(1): 2348, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393775

RESUMO

The quantum spin liquid is a highly entangled magnetic state characterized by the absence of static magnetism in its ground state. Instead, the spins fluctuate in a highly correlated way down to the lowest temperatures. Quantum spin liquids are very rare and are confined to a few specific cases where the interactions between the magnetic ions cannot be simultaneously satisfied (known as frustration). Lattices with magnetic ions in triangular or tetrahedral arrangements, which interact via isotropic antiferromagnetic interactions, can generate such a frustration. Three-dimensional isotropic spin liquids have mostly been sought in materials where the magnetic ions form pyrochlore or hyperkagome lattices. Here we present a three-dimensional lattice called the hyper-hyperkagome that enables spin liquid behaviour and manifests in the compound PbCuTe2O6. Using a combination of experiment and theory, we show that this system exhibits signs of being a quantum spin liquid with no detectable static magnetism together with the presence of diffuse continua in the magnetic spectrum suggestive of fractional spinon excitations.

3.
Nat Commun ; 10(1): 4530, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594940

RESUMO

A phase transition is often accompanied by the appearance of an order parameter and symmetry breaking. Certain magnetic materials exhibit exotic hidden-order phases, in which the order parameters are not directly accessible to conventional magnetic measurements. Thus, experimental identification and theoretical understanding of a hidden order are difficult. Here we combine neutron scattering and thermodynamic probes to study the newly discovered rare-earth triangular-lattice magnet TmMgGaO4. Clear magnetic Bragg peaks at K points are observed in the elastic neutron diffraction measurements. More interesting, however, is the observation of sharp and highly dispersive spin excitations that cannot be explained by a magnetic dipolar order, but instead is the direct consequence of the underlying multipolar order that is "hidden" in the neutron diffraction experiments. We demonstrate that the observed unusual spin correlations and thermodynamics can be accurately described by a transverse field Ising model on the triangular lattice with an intertwined dipolar and ferro-multipolar order.

4.
Chem Commun (Camb) ; 54(49): 6340-6343, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29863211

RESUMO

Solvent diffusion in a prototypical supramolecular gel probed by quasi-elastic neutron scattering on the picosecond timescale is faster than that in the respective bulk solvent. This phenomenon is hypothesized to be due to disruption of the hydrogen bonding of the solvent by the large hydrophobic surface of the gel network.

5.
Nat Commun ; 8: 15814, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28639624

RESUMO

Since its proposal by Anderson, resonating valence bonds (RVB) formed by a superposition of fluctuating singlet pairs have been a paradigmatic concept in understanding quantum spin liquids. Here, we show that excitations related to singlet breaking on nearest-neighbour bonds describe the high-energy part of the excitation spectrum in YbMgGaO4, the effective spin-1/2 frustrated antiferromagnet on the triangular lattice, as originally considered by Anderson. By a thorough single-crystal inelastic neutron scattering study, we demonstrate that nearest-neighbour RVB excitations account for the bulk of the spectral weight above 0.5 meV. This renders YbMgGaO4 the first experimental system where putative RVB correlations restricted to nearest neighbours are observed, and poses a fundamental question of how complex interactions on the triangular lattice conspire to form this unique many-body state.

6.
Phys Rev Lett ; 118(10): 107202, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339219

RESUMO

We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb^{3+} crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO_{4}. Three CEF excitations from the ground-state Kramers doublet are centered at the energies ℏω=39, 61, and 97 meV in agreement with the effective spin-1/2 g factors and experimental heat capacity, but reveal sizable broadening. We argue that this broadening originates from the site mixing between Mg^{2+} and Ga^{3+} giving rise to a distribution of Yb-O distances and orientations and, thus, of CEF parameters that account for the peculiar energy profile of the CEF excitations. The CEF randomness gives rise to a distribution of the effective spin-1/2 g factors and explains the unprecedented broadening of low-energy magnetic excitations in the fully polarized ferromagnetic phase of YbMgGaO_{4}, although a distribution of magnetic couplings due to the Mg/Ga disorder may be important as well.

7.
Inorg Chem ; 55(20): 10377-10382, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27670363

RESUMO

A tetranuclear [2 × 2] grid-like manganese(III) Schiff base complex, Mn4, has been synthesized and characterized by single-crystal X-ray crystallography. Direct-current magnetization measurements were performed on the system and proved to be insufficient for an accurate magnetic model to be deduced. Combined inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) experiments provided the necessary information in order to successfully model the magnetic properties of Mn4. The resulting model takes into account both the magnitude and the relative orientations of the single-ion anisotropy tensors.

8.
Soft Matter ; 11(42): 8354-71, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26338138

RESUMO

We have studied nanoscale diffusion of membrane hydration water in fluid-phase lipid bilayers made of 1,2-dimyristoyl-3-phosphocholine (DMPC) using incoherent quasi-elastic neutron scattering. Dynamics were fit directly in the energy domain using the Fourier transform of a stretched exponential. By using large, 2-dimensional detectors, lateral motions of water molecules and motions perpendicular to the membranes could be studied simultaneously, resulting in 2-dimensional maps of relaxation time, τ, and stretching exponent, ß. We present experimental evidence for anomalous (sub-diffusive) and anisotropic diffusion of membrane hydration water molecules over nanometer distances. By combining molecular dynamics and Brownian dynamics simulations, the potential microscopic origins for the anomaly and anisotropy of hydration water were investigated. Bulk water was found to show intrinsic sub-diffusive motion at time scales of several picoseconds, likely related to caging effects. In membrane hydration water, however, the anisotropy of confinement and local dynamical environments leads to an anisotropy of relaxation times and stretched exponents, indicative of anomalous dynamics.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Água/química , Anisotropia , Difusão , Dimiristoilfosfatidilcolina/química , Movimento (Física)
9.
J Chem Phys ; 134(8): 084503, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21361547

RESUMO

The assignment of the vibrational spectra of lithium hydroxide monohydrate, LiOH·H(2)O, has been controversial for more than half-a-century. Here we show that only the combination of all three forms of vibrational spectroscopy: infrared, Raman and inelastic neutron scattering spectroscopies coupled with periodic-density functional theory calculations is able to satisfactorily assign the spectra. All previous work based on empirical criteria is, at least partially, incorrect. The librational modes of water do not follow the expected rock > wag > twist order and the calculations indicate that complete or partial deuterium substitution would not be useful in assigning the modes.


Assuntos
Compostos de Lítio/química , Água/química , Modelos Moleculares , Teoria Quântica , Espectrofotometria Infravermelho , Análise Espectral Raman
10.
Nat Mater ; 5(7): 561-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16783361

RESUMO

Fluoride phases that contain the spin-1/2 4d9 Ag(II) ion have recently been predicted to have interesting or unusual magnetochemistry, owing to their structural similarity to the 3d9 Cu(II) cuprates and the covalence associated with this unusual oxidation state of silver. Here we present a comprehensive study of structure and magnetism in the layered Ag(II) fluoride Cs2AgF4, using magnetic susceptometry, inelastic neutron scattering techniques and both X-ray and neutron powder diffraction. We find that this material is well described as a two-dimensional ferromagnet, in sharp contrast to the high-T(C) cuprates and a previous report in the literature. Analyses of the structural data show that Cs2AgF4 is orbitally ordered at all temperatures of measurement. Therefore, we suggest that orbital ordering may be the origin of the ferromagnetism we observe in this material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...