Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol ; 165(3): 1344-1352, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24820024

RESUMO

Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae.

2.
Plant Cell ; 23(7): 2619-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21764992

RESUMO

Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Elétrons , Hidrogênio/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Prótons , Aerobiose , Anaerobiose , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Teste de Complementação Genética , Hidrogenase/metabolismo , Luz , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ionóforos de Próton/farmacologia , Enxofre/metabolismo
3.
BMC Biotechnol ; 11: 7, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255402

RESUMO

BACKGROUND: When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. RESULTS: In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 µg TAG per million cell in CC124 to 11 µg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. CONCLUSION: A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Ácidos Graxos/metabolismo , Amido/metabolismo , Triglicerídeos/metabolismo , Reatores Biológicos , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/classificação , Clorofila , Ácidos Graxos/química , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Nitrogênio/deficiência , Oxazinas/química , Cloreto de Sódio/química , Amido/química , Triglicerídeos/química
4.
Plant Physiol ; 151(2): 631-40, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700559

RESUMO

Under sulfur deprivation conditions, the green alga Chlamydomonas reinhardtii produces hydrogen in the light in a sustainable manner thanks to the contribution of two pathways, direct and indirect. In the direct pathway, photosystem II (PSII) supplies electrons to hydrogenase through the photosynthetic electron transport chain, while in the indirect pathway, hydrogen is produced in the absence of PSII through a photosystem I-dependent process. Starch metabolism has been proposed to contribute to both pathways by feeding respiration and maintaining anoxia during the direct pathway and by supplying reductants to the plastoquinone pool during the indirect pathway. At variance with this scheme, we report that a mutant lacking starch (defective for sta6) produces similar hydrogen amounts as the parental strain in conditions of sulfur deprivation. However, when PSII is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, conditions where hydrogen is produced by the indirect pathway, hydrogen production is strongly reduced in the starch-deficient mutant. We conclude that starch breakdown contributes to the indirect pathway by feeding electrons to the plastoquinone pool but is dispensable for operation of the direct pathway that prevails in the absence of DCMU. While hydrogenase induction was strongly impaired in the starch-deficient mutant under dark anaerobic conditions, wild-type-like induction was observed in the light. Because this light-driven hydrogenase induction is DCMU insensitive and strongly inhibited by carbonyl cyanide-p-trifluoromethoxyphenylhydrazone or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, we conclude that this process is regulated by the proton gradient generated by cyclic electron flow around PSI.


Assuntos
Chlamydomonas/metabolismo , Hidrogênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Amido/metabolismo , Acetatos/metabolismo , Anaerobiose , Animais , Chlamydomonas/citologia , Chlamydomonas/enzimologia , Deutério/metabolismo , Teste de Complementação Genética , Hidrogenase/metabolismo , Espaço Intracelular/metabolismo , Mutação/genética , Enxofre/deficiência
5.
FEBS Lett ; 580(30): 6891-7, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17150215

RESUMO

ABC transporters from the multidrug resistance-associated protein (MRP) subfamily are glutathione S-conjugate pumps exhibiting a broad substrate specificity illustrated by numerous xenobiotics, such as anticancer drugs, herbicides, pesticides and heavy metals. The engineering of MRP transporters into plants might be interesting either to reduce the quantity of xenobiotics taken up by the plant in the context of "safe-food" strategies or, conversely, in the development of phytoremediation strategies in which xenobiotics are sequestered in the vacuolar compartment. In this report, we obtained Arabidopsis transgenic plants overexpressing human MRP1. In these plants, expression of MRP1 did not increase plant resistance to antimony salts (Sb(III)), a classical glutathione-conjugate substrate of MRP1. However, the transporter was fully translated in roots and shoots, and targeted to the plasma membrane. In order to investigate the functionality of MRP1 in Arabidopsis, mesophyll cell protoplasts (MCPs) were isolated from transgenic plants and transport activities were measured by using calcein or Sb(III) as substrates. Expression of MRP1 at the plasma membrane was correlated with an increase in the MCPs resistance to Sb(III) and a limitation of the metalloid content in the protoplasts due to an improvement in Sb(III) efflux. Moreover, Sb(III) transport was sensitive to classical inhibitors of the human MRP1, such as MK571 or glibenclamide. These results demonstrate that a human ABC transporter can be functionally introduced in Arabidopsis, which might be useful, with the help of stronger promoters, to reduce the accumulation of xenobiotics in plants, such as heavy metals from multi-contaminated soils.


Assuntos
Antimônio/química , Antimônio/farmacologia , Arabidopsis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Sais/química , Antineoplásicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter/genética , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plantas Geneticamente Modificadas , Biossíntese de Proteínas/genética , RNA de Plantas/genética
6.
Plant Cell ; 17(1): 219-32, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15608332

RESUMO

In higher plants, the Ndh complex reduces plastoquinones and is involved in cyclic electron flow around photosystem I, supplying extra-ATP for photosynthesis, particularly under environmental stress conditions. Based on plastid genome sequences, the Ndh complex would contain 11 subunits (NDH-A to -K), but homologies with bacterial complex indicate the probable existence of additional subunits. To identify missing subunits, tobacco (Nicotiana tabacum) NDH-H was His tagged at its N terminus using plastid transformation. A functional Ndh subcomplex was purified by Ni(2+) affinity chromatography and its subunit composition analyzed by mass spectrometry. Five plastid encoded subunits (NDH-A, -H, -I, -J, and -K) were identified as well as three new subunits (NDH-M, -N, and -O) homologous to cyanobacterial and higher plant proteins. Arabidopsis thaliana mutants missing one of these new subunits lack a functional Ndh complex, and NDH-M and NDH-N are not detected in a tobacco transformant lacking the Ndh complex. We discuss the involvement of these three nuclear-encoded subunits in the functional integrity of the plastidial complex.


Assuntos
Núcleo Celular/genética , Genes de Plantas/genética , NADPH Desidrogenase/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Mutação/genética , NADPH Desidrogenase/genética , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Plastídeos/genética , Subunidades Proteicas/genética , Tilacoides/genética , Tilacoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
7.
Plant Biotechnol J ; 2(5): 389-99, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17168886

RESUMO

Rubisco is a hexadecameric enzyme composed of two subunits: a small subunit (SSU) encoded by a nuclear gene (rbcS), and a large subunit (LSU) encoded by a plastid gene (rbcL). Due to its high abundance, Rubisco represents an interesting target to express peptides or small proteins as fusion products at high levels. In an attempt to modify the plant metal content, a polyhistidine sequence was fused to Rubisco, the most abundant protein of plants. Plastid transformation was used to express a polyhistidine (6x) fused to the C-terminal extremity of the tobacco LSU. Transplastomic tobacco plants were generated by cotransformation of polyethylene glycol-treated protoplasts using two vectors: one containing the 16SrDNA marker gene, conferring spectinomycin resistance, and the other the polyhistidine-tagged rbcL gene. Homoplasmic plants containing L8-(His)6S8 as a single enzyme species were obtained. These plants contained normal Rubisco amounts and activity and displayed normal photosynthetic properties and growth. Interestingly, transplastomic plants accumulated higher zinc amounts than the wild-type when grown on zinc-enriched media. The highest zinc increase observed exceeded the estimated chelating ability of the polyhistidine sequence, indicating a perturbation in intracellular zinc homeostasis. We discuss the possibility of using Rubisco to express foreign peptides as fusion products and to confer new properties to higher plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...