Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Physiol Educ ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660716

RESUMO

Information literacy skills are an important part of research skills for undergraduate science students. This case study presents a novel approach to developing these types of research skills. By deconstructing the research process into separate steps, explicitly defining, and practicing the skills involved, students can progressively develop these skills and apply them. In this course, systematic reviews are used as exemplars for the research process. We align the Research Skills Development Framework with the steps of a systematic review and present specific skills and accompanying activities for each step. This workshop-based course emphasizes skill development and can help overcome assessments that rely solely on a final paper, with no record or evidence of the student research process, that could be created by a generative artificial intelligence tool.

2.
J Physiol ; 595(6): 2099-2113, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28025824

RESUMO

KEY POINTS: Muscle-derived thermogenesis during acute cold exposure in humans consists of a combination of cold-induced increases in skeletal muscle proton leak and shivering. Daily cold exposure results in an increase in brown adipose tissue oxidative capacity coupled with a decrease in the cold-induced skeletal muscle proton leak and shivering intensity. Improved coupling between electromyography-determined muscle activity and whole-body heat production following cold acclimation suggests a maintenance of ATPase-dependent thermogenesis and decrease in skeletal muscle ATPase independent thermogenesis. Although daily cold exposure did not change the fibre composition of the vastus lateralis, the fibre composition was a strong predictor of the shivering pattern evoked during acute cold exposure. ABSTRACT: We previously showed that 4 weeks of daily cold exposure in humans can increase brown adipose tissue (BAT) volume by 45% and oxidative metabolism by 182%. Surprisingly, we did not find a reciprocal reduction in shivering intensity when exposed to a mild cold (18°C). The present study aimed to determine whether changes in skeletal muscle oxidative metabolism or shivering activity could account for these unexpected findings. Nine men participated in a 4 week cold acclimation intervention (10°C water circulating in liquid-conditioned suit, 2 h day-1 , 5 days week-1 ). Shivering intensity and pattern were measured continuously during controlled cold exposure (150 min at 4 °C) before and after the acclimation. Muscle biopsies from the m. vastus lateralis were obtained to measure oxygen consumption rate and proton leak of permeabilized muscle fibres. Cold acclimation elicited a modest 21% (P < 0.05) decrease in whole-body and m. vastus lateralis shivering intensity. Furthermore, cold acclimation abolished the acute cold-induced increase in proton leak. Although daily cold exposure did not change the fibre composition of the m. vastus lateralis, fibre composition was a strong predictor of the shivering pattern evoked during acute cold. We conclude that muscle-derived thermogenesis during acute cold exposure in humans is not only limited to shivering, but also includes cold-induced increases in proton leak. The efficiency of muscle oxidative phosphorylation improves with cold acclimation, suggesting that reduced muscle thermogenesis occurs through decreased proton leak, in addition to decreased shivering intensity as BAT capacity and activity increase. These changes occur with no net difference in whole-body thermogenesis.


Assuntos
Aclimatação/fisiologia , Tecido Adiposo Marrom/fisiologia , Temperatura Baixa , Músculo Esquelético/fisiologia , Termogênese/fisiologia , Adulto , Humanos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Consumo de Oxigênio , Adulto Jovem
3.
FASEB J ; 27(10): 4213-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23825224

RESUMO

Exercise substantially improves metabolic health, making the elicited mechanisms important targets for novel therapeutic strategies. Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein highly selectively expressed in skeletal muscle. Here we report that moderate UCP3 overexpression (roughly 3-fold) in muscles of UCP3 transgenic (UCP3 Tg) mice acts as an exercise mimetic in many ways. UCP3 overexpression increased spontaneous activity (∼40%) and energy expenditure (∼5-10%) and decreased oxidative stress (∼15-20%), similar to exercise training in wild-type (WT) mice. The increase in complete fatty acid oxidation (FAO; ∼30% for WT and ∼70% for UCP3 Tg) and energy expenditure (∼8% for WT and 15% for UCP3 Tg) in response to endurance training was higher in UCP3 Tg than in WT mice, showing an additive effect of UCP3 and endurance training on these two parameters. Moreover, increases in circulating short-chain acylcarnitines in response to acute exercise in untrained WT mice were absent with training or in UCP3 Tg mice. UCP3 overexpression had the same effect as training in decreasing long-chain acylcarnitines. Outcomes coincided with a reduction in muscle carnitine acetyltransferase activity that catalyzes the formation of acylcarnitines. Overall, results are consistent with the conclusions that circulating acylcarnitines could be used as a marker of incomplete muscle FAO and that UCP3 is a potential target for the treatment of prevalent metabolic diseases in which muscle FAO is affected.


Assuntos
Regulação da Expressão Gênica/fisiologia , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Resistência Física , Animais , Biomarcadores , Ingestão de Alimentos , Metabolismo Energético , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Oxirredução , Estresse Oxidativo , Condicionamento Físico Animal , Proteína Desacopladora 3
4.
PLoS Biol ; 11(2): e1001485, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431266

RESUMO

When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adolescente , Adulto , Idoso , Animais , Glucose , Humanos , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Niacina/farmacologia , Esterol Esterase/metabolismo , Adulto Jovem
5.
Diabetes ; 61(2): 310-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22210322

RESUMO

Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 µmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Adipocinas , Animais , Apelina , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
6.
PLoS One ; 5(3): e9834, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20352092

RESUMO

BACKGROUND/AIM: Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. METHODOLOGY/PRINCIPAL FINDINGS: Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates) and 9 microM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. CONCLUSIONS/SIGNIFICANCE: This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Animais , Cromatografia Gasosa/métodos , Feminino , Resistência à Insulina , Cetonas/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Oxigênio/metabolismo
7.
Endocrinology ; 151(1): 123-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19887568

RESUMO

This work aimed at characterizing the role of peroxisome proliferator-activated receptors (PPAR)alpha in human white adipocyte metabolism and at comparing PPAR alpha and PPAR gamma actions in these cells. Primary cultures of human fat cells were treated with the PPAR alpha agonist GW7647 or the PPAR gamma agonist rosiglitazone. Changes in gene expression were determined using DNA microarrays and quantitative RT-PCR. Western blot and metabolic studies were performed to identify the biological effects elicited by PPAR agonist treatments. GW7647 induced an up-regulation of beta-oxidation gene expression and increased palmitate oxidation. Unexpectedly, glycolysis was strongly reduced at transcriptional and functional levels by GW7647 leading to a decrease in pyruvate and lactate production. Glucose oxidation was decreased. Triglyceride esterification and de novo lipogenesis were inhibited by the PPAR alpha agonist. GW7647-induced alterations were abolished by a treatment with a PPAR alpha antagonist. Small interfering RNA-mediated extinction of PPAR alpha gene expression in hMADS adipocytes attenuated GW7647 induction of palmitate oxidation. Rosiglitazone had no major impact on glycolysis and beta-oxidation. Altogether these results show that PPAR alpha can selectively up-regulate beta-oxidation and decrease glucose utilization in human white adipocytes.


Assuntos
Adipócitos Brancos/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , PPAR alfa/fisiologia , Adipócitos Brancos/efeitos dos fármacos , Butiratos/farmacologia , Células Cultivadas , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução/efeitos dos fármacos , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/fisiologia , Compostos de Fenilureia/farmacologia , Rosiglitazona , Tiazolidinedionas/farmacologia
8.
Proc Nutr Soc ; 68(4): 350-60, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19698205

RESUMO

Human obesity and its complications are an increasing burden in developed and underdeveloped countries. Adipose tissue mass and the mechanisms that control it are central to elucidating the aetiology of obesity and insulin resistance. Over the past 15 years tremendous progress has been made in several avenues relating to adipose tissue. Knowledge of the lipolytic machinery has grown with the identification of new lipases, cofactors and interactions between proteins and lipids that are central to the regulation of basal and stimulated lipolysis. The dated idea of an inert lipid droplet has been appropriately revamped to that of a dynamic and highly-structured organelle that in itself offers regulatory control over lipolysis. The present review provides an overview of the numerous partners and pathways involved in adipose tissue lipolysis and their interaction under various metabolic states. Integration of these findings into whole adipose tissue metabolism and its systemic effects is also presented in the context of inflammation and insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Lipólise , Obesidade/metabolismo , Adipócitos Brancos/metabolismo , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Proteínas/metabolismo , Transdução de Sinais
9.
FEBS Lett ; 583(18): 3045-9, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19695247

RESUMO

We examined the effects of chronic TNFalpha and dibutyryl-cAMP (Db-cAMP) pre-treatment on the lipolytic machinery of human hMADS adipocytes. TNFalpha decreased adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein content and triglycerides (TG)-hydrolase activity but increased basal lipolysis due to a marked reduction in perilipin (PLIN) protein content. Conversely, Db-cAMP increased ATGL and HSL protein content but prevented PLIN phosphorylation, the net result being accentuated basal lipolysis. In forskolin-stimulated conditions, TNFalpha and Db-cAMP pre-treatment decreased stimulated TG-hydrolase activity and impaired PLIN phosphorylation. Together, this resulted in a severely attenuated response to forskolin-stimulated lipolysis.


Assuntos
Adipócitos/efeitos dos fármacos , AMP Cíclico/farmacologia , Lipase/análise , Lipólise/efeitos dos fármacos , Fosfoproteínas/análise , Esterol Esterase/análise , Fator de Necrose Tumoral alfa/farmacologia , Adipócitos/química , Adipócitos/metabolismo , Proteínas de Transporte , Colforsina/farmacologia , Humanos , Perilipina-1 , Fosforilação/efeitos dos fármacos
10.
Am J Physiol Regul Integr Comp Physiol ; 297(4): R960-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19625692

RESUMO

The plasma membrane fatty acid transport protein FAT/CD36 is also present at the mitochondria, where it may contribute to the regulation of fatty acid oxidation, although this has been challenged. Therefore, we have compared enzyme activities and rates of mitochondrial palmitate oxidation in muscles of wild-type (WT) and FAT/CD36 knockout (KO) mice, at rest and after muscle contraction. In WT and KO mice, carnitine palmitoyltransferase-I, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activities did not differ in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of WT and FAT/CD36 KO mice. Basal palmitate oxidation rates were lower (P < 0.05) in KO mice (SS -18%; IMF -13%). Muscle contraction increased fatty acid oxidation (+18%) and mitochondrial FAT/CD36 protein (+16%) in WT IMF but not in WT SS, or in either mitochondrial subpopulation in KO mice. This revealed that the difference in IMF mitochondrial fatty acid oxidation between WT and KO mice can be increased approximately 2.5-fold from 13% under basal conditions to 35% during muscle contraction. The FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO), inhibited palmitate transport across the plasma membrane in WT, but not in KO mice. In contrast, SSO bound to mitochondrial membranes and reduced palmitate oxidation rates to a similar extent in both WT and KO mitochondria ( approximately 80%; P < 0.05). In addition, SSO reduced state III respiration with succinate as a substrate, without altering mitochondrial coupling (P/O ratios). Thus, while SSO inhibits FAT/CD36-mediated palmitate transport at the plasma membrane, SSO has undefined effects on mitochondria. Nevertheless, the KO animals reveal that FAT/CD36 contributes to the regulation of mitochondrial fatty acid oxidation, which is especially important for meeting the increased metabolic demands during muscle contraction.


Assuntos
Antígenos CD36/deficiência , Mitocôndrias Musculares/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Ácido Palmítico/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Animais , Transporte Biológico , Antígenos CD36/genética , Carnitina O-Palmitoiltransferase/metabolismo , Citrato (si)-Sintase/metabolismo , Feminino , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Ácidos Oleicos/farmacologia , Oxirredução , Ácido Succínico/metabolismo , Succinimidas/farmacologia
11.
J Biol Chem ; 284(27): 18282-91, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19433586

RESUMO

Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes.


Assuntos
Adipócitos/enzimologia , Metabolismo Energético/fisiologia , Lipase/metabolismo , Lipólise/fisiologia , Esterol Esterase/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , Citosol/enzimologia , Esterificação/fisiologia , Ácidos Graxos/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Hidrólise , Lipase/genética , RNA Interferente Pequeno , Esterol Esterase/genética
12.
J Biol Chem ; 283(37): 25124-25131, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18628202

RESUMO

Uncoupling protein-3 (UCP3) is a mitochondrial inner membrane protein expressed most abundantly in skeletal muscle and to a lesser extent in heart and brown adipose tissue. Evidence supports a role for UCP3 in fatty acid oxidation (FAO); however, the underlying mechanism has not been explored. In 2001 we proposed a role for UCP3 in fatty acid export, leading to higher FAO rates (Himms-Hagen, J., and Harper, M. E. (2001) Exp. Biol. Med. (Maywood) 226, 78-84). Specifically, this widely held hypothesis states that during elevated FAO rates, UCP3 exports fatty acid anions, thereby maintaining mitochondrial co-enzyme A availability; reactivation of exported fatty acid anions would ultimately enable increased FAO. Here we tested mechanistic aspects of this hypothesis as well as its functional implications, namely increased FAO rates. Using complementary mechanistic approaches in mitochondria from wild-type and Ucp3(-/-) mice, we find that UCP3 is not required for FAO regardless of substrate type or supply rate covering a 20-fold range. Fatty acid anion export and reoxidation during elevated FAO, although present in skeletal muscle mitochondria, are independent of UCP3 abundance. Interestingly, UCP3 was found to be necessary for the fasting-induced enhancement of FAO rate and capacity, possibly via mitigated mitochondrial oxidative stress. Thus, although our observations indicate that UCP3 can impact FAO rates, the mechanistic basis is not via an integral function for UCP3 in the FAO machinery. Overall our data indicate a function for UCP3 in mitochondrial adaptation to perturbed cellular energy balance and integrate previous observations that have linked UCP3 to reduced oxidative stress and FAO.


Assuntos
Ânions/metabolismo , Ácidos Graxos/metabolismo , Canais Iônicos/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Oxigênio/metabolismo , Animais , Transporte Biológico , Coenzima A/metabolismo , Feminino , Canais Iônicos/metabolismo , Íons , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Estresse Oxidativo , Proteína Desacopladora 3
13.
Appl Physiol Nutr Metab ; 32(5): 884-94, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18059613

RESUMO

Despite almost a decade of research since the identification of uncoupling protein-3 (UCP3), the molecular mechanisms and physiological functions of this mitochondrial anion carrier protein are not well understood. Because of its highly selective expression in skeletal muscle and the existence of mitochondrial proton leak in this tissue, early reports proposed that UCP3 caused a basal proton leak and increased thermogenesis. However, gene expression data and results from knockout and overexpression studies indicated that UCP3 does not cause basal proton leak or physiological thermogenesis. UCP3 expression is associated with increases in circulating fatty acids and in fatty acid oxidation (FAO) in muscle. Fatty acids are also well recognized as activators of the prototypic UCP1 in brown adipose tissue. This has led to hypotheses implicating UCP3 in mitochondrial fatty acid translocation. The corresponding hypothesized physiological roles include facilitated FAO and protection from the lipotoxic effects of fatty acids. Recent in vitro studies of physiological increases in UCP3 in muscle cells demonstrate increased FAO, and decreased reactive oxygen species (ROS) production. Detailed mechanistic studies indicate that ROS or lipid by-products of ROS can activate a UCP3-mediated proton leak, which in turn acts in a negative feedback loop to mitigate ROS production. Altogether, UCP3 appears to play roles in muscle FAO and mitigated ROS production. Future studies will need to elucidate the molecular mechanisms underlying increased FAO, as well as the physiological relevance of ROS-activated proton leak.


Assuntos
Metabolismo Energético/fisiologia , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Animais , Dieta , Humanos , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Mutação , Proteína Desacopladora 3
14.
FASEB J ; 21(2): 312-24, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17202247

RESUMO

Uncoupling protein (UCP) 3 (UCP3) is a mitochondrial anion carrier protein with highly selective expression in skeletal muscle. Despite a great deal of interest, to date neither its molecular mechanism nor its biochemical and physiological functions are well understood. Based on its high degree of homology to the original UCP (UCP1), early studies examined a role for UCP3 in thermogenesis. However, evidence for such a function is lacking. Recent studies have focused on two distinct, but not mutually exclusive, hypotheses: 1) UCP3 mitigates reactive oxygen species (ROS) production, and 2) UCP3 is somehow involved in fatty acid (FA) translocation. While supportive evidence exists for both hypotheses, the interpretation of the corresponding evidence has created some controversy. Mechanistic studies examining mitigated ROS production have been largely conducted in vitro, and the physiological significance of the findings is questioned. Conversely, while physiological evidence exists for FA translocation hypotheses, the evidence is largely correlative, leaving causal relationships unexplored. This review critically assesses evidence for the hypotheses and attempts to link the outcomes from mechanistic studies to physiological implications. Important directions for future studies, using current and novel approaches, are discussed.


Assuntos
Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Humanos , Canais Iônicos/fisiologia , Metabolismo dos Lipídeos , Proteínas Mitocondriais/fisiologia , Modelos Biológicos , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Termogênese , Proteína Desacopladora 3
15.
Am J Physiol Endocrinol Metab ; 291(1): E99-E107, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16464906

RESUMO

Muscle fatty acid (FA) metabolism is impaired in obesity and insulin resistance, reflected by reduced rates of FA oxidation and accumulation of lipids. It has been suggested that interventions that increase FA oxidation may enhance insulin action by reducing these lipid pools. Here, we examined the effect of endurance training on rates of mitochondrial FA oxidation, the activity of carnitine palmitoyltransferase I (CPT I), and the lipid content in muscle of obese individuals and related these to measures of glucose tolerance. Nine obese subjects completed 8 wk of moderate-intensity endurance training, and muscle biopsies were obtained before and after training. Training significantly improved glucose tolerance, with a reduction in the area under the curve for glucose (P < 0.05) and insulin (P = 0.01) during an oral glucose tolerance test. CPT I activity increased 250% (P = 0.001) with training and became less sensitive to inhibition by malonyl-CoA. This was associated with an increase in mitochondrial FA oxidation (+120%, P < 0.001). Training had no effect on muscle triacylglycerol content; however, there was a trend for training to reduce both the total diacylglcyerol (DAG) content (-15%, P = 0.06) and the saturated DAG-FA species (-27%, P = 0.06). Training reduced both total ceramide content (-42%, P = 0.01) and the saturated ceramide species (-32%, P < 0.05). These findings suggest that the improved capacity for mitochondrial FA uptake and oxidation leads not only to a reduction in muscle lipid content but also a to change in the saturation status of lipids, which may, at least in part, provide a mechanism for the enhanced insulin action observed with endurance training in obese individuals.


Assuntos
Glicemia/metabolismo , Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Área Sob a Curva , Biópsia por Agulha Fina , Western Blotting , Carnitina O-Palmitoiltransferase/metabolismo , Citrato (si)-Sintase/metabolismo , Enoil-CoA Hidratase/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Masculino , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/enzimologia , Obesidade/sangue , Obesidade/terapia , Triglicerídeos/metabolismo
16.
J Physiol ; 571(Pt 1): 201-10, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16357012

RESUMO

Mitochondrial fatty acid transport is a rate-limiting step in long chain fatty acid (LCFA) oxidation. In rat skeletal muscle, the transport of LCFA at the level of mitochondria is regulated by carnitine palmitoyltransferase I (CPTI) activity and the content of malonyl-CoA (M-CoA); however, this relationship is not consistently observed in humans. Recently, fatty acid translocase (FAT)/CD36 was identified on mitochondria isolated from rat and human skeletal muscle and found to be involved in LCFA oxidation. The present study investigated the effects of exercise (120 min of cycling at approximately 60% V(O2peak)) on CPTI palmitoyl-CoA and M-CoA kinetics, and on the presence and functional significance of FAT/CD36 on skeletal muscle mitochondria. Whole body fat oxidation rates progressively increased during exercise (P < 0.05), and concomitantly M-CoA inhibition of CPTI was progressively attenuated. Compared to rest, 120 min of cycling reduced (P < 0.05) the inhibition of 0.7, 2, 5 and 10 microM M-CoA by 16%, 21%, 30% and 34%, respectively. Whole body fat oxidation and palmitate oxidation rates in isolated mitochondria progressively increased (P < 0.05) during exercise, and were positively correlated (r = 0.78). Mitochondrial FAT/CD36 protein increased by 63% (P < 0.05) during exercise and was significantly (P < 0.05) correlated with mitochondrial palmitate oxidation rates at all time points (r= 0.41). However, the strongest (P < 0.05) correlation was observed following 120 min of cycling (r = 0.63). Importantly, the addition of sulfo-N-succimidyloleate, a specific inhibitor of FAT/CD36, reduced mitochondrial palmitate oxidation to approximately 20%, indicating FAT/CD36 is functionally significant with respect to LCFA oxidation. We hypothesize that exercise-induced increases in fatty acid oxidation occur as a result of an increased ability to transport LCFA into mitochondria. We further suggest that decreased CPTI M-CoA sensitivity and increased mitochondrial FAT/CD36 protein are both important for increasing whole body fatty acid oxidation during prolonged exercise.


Assuntos
Antígenos CD36/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Exercício Físico/fisiologia , Ácidos Graxos Essenciais/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Adulto , Transporte Biológico/efeitos dos fármacos , Glicemia/análise , Western Blotting , Citrato (si)-Sintase/análise , Feminino , Humanos , Masculino , Malonil Coenzima A/metabolismo , Ácidos Oleicos/farmacologia , Oxirredução , Palmitatos/metabolismo , Succinimidas/farmacologia , Fatores de Tempo
17.
Am J Physiol Endocrinol Metab ; 290(3): E509-15, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16219667

RESUMO

Fatty acid translocase (FAT/CD36) is a transport protein with a high affinity for long-chain fatty acids (LCFA). It was recently identified on rat skeletal muscle mitochondrial membranes and found to be required for palmitate uptake and oxidation. Our aim was to identify the presence and elucidate the role of FAT/CD36 on human skeletal muscle mitochondrial membranes. We demonstrate that FAT/CD36 is present in highly purified human skeletal mitochondria. Blocking of human muscle mitochondrial FAT/CD36 with the specific inhibitor sulfo-N-succimidyl-oleate (SSO) decreased palmitate oxidation in a dose-dependent manner. At maximal SSO concentrations (200 muM) palmitate oxidation was decreased by 95% (P<0.01), suggesting an important role for FAT/CD36 in LCFA transport across the mitochondrial membranes. SSO treatment of mitochondria did not affect mitochondrial octanoate oxidation and had no effect on maximal and submaximal carnitine palmitoyltransferase I (CPT I) activity. However, SSO treatment did inhibit palmitoylcarnitine oxidation by 92% (P<0.001), suggesting that FAT/CD36 may be playing a role downstream of CPT I activity, possibly in the transfer of palmitoylcarnitine from CPT I to carnitine-acylcarnitine translocase. These data provide new insight regarding human skeletal muscle mitochondrial fatty acid (FA) transport, and suggest that FAT/CD36 could be involved in the cellular and mitochondrial adaptations resulting in improved and/or impaired states of FA oxidation.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Ácido Palmítico/metabolismo , Adulto , Western Blotting , Caprilatos/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Transporte de Ácido Graxo/antagonistas & inibidores , Proteínas de Transporte de Ácido Graxo/metabolismo , Feminino , Humanos , Masculino , Mitocôndrias Musculares/enzimologia , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Ácidos Oleicos/farmacologia , Oxirredução , Succinimidas/farmacologia
18.
Am J Physiol Endocrinol Metab ; 286(1): E85-91, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12954596

RESUMO

Carnitine palmitoyltransferase I (CPT I) is considered the rate-limiting enzyme in the transfer of long-chain fatty acids (LCFA) into the mitochondria and is reversibly inhibited by malonyl-CoA (M-CoA) in vitro. In rat skeletal muscle, M-CoA levels decrease during exercise, releasing the inhibition of CPT I and increasing LCFA oxidation. However, in human skeletal muscle, M-CoA levels do not change during moderate-intensity exercise despite large increases in fat oxidation, suggesting that M-CoA is not the sole regulator of increased CPT I activity during exercise. In the present study, we measured CPT I activity in intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondria isolated from human vastus lateralis (VL), rat soleus (Sol), and red gastrocnemius (RG) muscles. We tested whether exercise-related levels ( approximately 65% maximal O2 uptake) of calcium and adenylate charge metabolites (free AMP, ADP, and Pi) could override the M-CoA-induced inhibition of CPT I activity and explain the increased CPT I flux during exercise. Protein content was approximately 25-40% higher in IMF than in SS mitochondria in all muscles. Maximal CPT I activity was similar in IMF and SS mitochondria in all muscles (VL: 282 +/- 46 vs. 280 +/- 51; Sol: 390 +/- 81 vs. 368 +/- 82; RG: 252 +/- 71 vs. 278 +/- 44 nmol.min-1.mg protein-1). Sensitivity to M-CoA did not differ between IMF and SS mitochondria in all muscles (25-31% inhibition in VL, 52-70% in Sol and RG). Calcium and adenylate charge metabolites did not override the M-CoA-induced inhibition of CPT I activity in mitochondria isolated from VL, Sol, and RG muscles. Decreasing pH from 7.1 to 6.8 reduced CPT I activity by approximately 34-40% in both VL mitochondrial fractions. In summary, this study reports no differences in CPT I activity or sensitivity to M-CoA between IMF and SS mitochondria isolated from human and rat skeletal muscles. Exercise-induced increases in calcium and adenylate charge metabolites do not appear responsible for upregulating CPT I activity in human or rat skeletal muscle during moderate aerobic exercise.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Malonil Coenzima A/metabolismo , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/enzimologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Carnitina Aciltransferases/metabolismo , Exercício Físico/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Mitocôndrias Musculares/classificação , Miofibrilas , Condicionamento Físico Animal/fisiologia , Ratos , Valores de Referência , Sarcolema , Frações Subcelulares/enzimologia
19.
Diabetes ; 51(8): 2459-66, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12145158

RESUMO

Weight loss in response to caloric restriction is variable. Because skeletal muscle mitochondrial proton leak may account for a large proportion of resting metabolic rate, we compared proton leak in diet-resistant and diet-responsive overweight women and compared the expression and gene characteristics of uncoupling protein (UCP)2 and UCP3. Of 1,129 overweight women who completed the University of Ottawa Weight Management Clinic program, 353 met compliance criteria and were free of medical conditions that could affect weight loss. Subjects were ranked according to percent body weight loss during the first 6 weeks of a 900-kcal meal replacement protocol. The highest and lowest quintiles of weight loss were defined as diet responsive and diet resistant, respectively. After body weight had been stable for at least 10 weeks, 12 of 70 subjects from each group consented to muscle biopsy and blood sampling for determinations of proton leak, UCP mRNA expression, and genetic studies. Despite similar baseline weight and age, weight loss was 43% greater, mitochondrial proton leak-dependent (state 4) respiration was 51% higher (P = 0.0062), and expression of UCP3 mRNA abundance was 25% greater (P < 0.001) in diet-responsive than in diet-resistant subjects. There were no differences in UCP2 mRNA abundance. None of the known polymorphisms in UCP3 or its 5' flanking sequence were associated with weight loss or UCP3 mRNA abundance. Thus, proton leak and the expression of UCP3 correlate with weight loss success and may be candidates for pharmacological regulation of fat oxidation in obese diet-resistant subjects.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais , Músculo Esquelético/metabolismo , Obesidade/genética , Proteínas/genética , Redução de Peso/genética , Peso Corporal , Primers do DNA , Dieta Redutora , Ingestão de Energia , Feminino , Testes Genéticos , Humanos , Canais Iônicos , Consumo de Oxigênio , Prótons , RNA Mensageiro/genética , Transcrição Gênica , Falha de Tratamento , Proteína Desacopladora 2 , Proteína Desacopladora 3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...