Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298255

RESUMO

Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.


Assuntos
Zooplâncton , Animais , Zooplâncton/fisiologia , Cílios/fisiologia , Pressão Hidrostática , Larva/fisiologia , Poliquetos/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Resposta Táctica/fisiologia , Opsinas/genética , Opsinas/metabolismo
2.
Evodevo ; 12(1): 10, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579780

RESUMO

The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.

3.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190376, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31884914

RESUMO

Sensory cells that detect mechanical forces usually have one or more specialized cilia. These mechanosensory cells underlie hearing, proprioception or gravity sensation. To date, it is unclear how cilia contribute to detecting mechanical forces and what is the relationship between mechanosensory ciliated cells in different animal groups and sensory systems. Here, we review examples of ciliated sensory cells with a focus on marine invertebrate animals. We discuss how various ciliated cells mediate mechanosensory responses during feeding, tactic responses or predator-prey interactions. We also highlight some of these systems as interesting and accessible models for future in-depth behavioural, functional and molecular studies. We envisage that embracing a broader diversity of organisms could lead to a more complete view of cilia-based mechanosensation. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Assuntos
Organismos Aquáticos/fisiologia , Cílios/fisiologia , Invertebrados/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Comportamento Animal/fisiologia , Comportamento Alimentar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA