Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 144(1): 1-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25850409

RESUMO

Osteocytes are the predominant cells in bone, where they form a cellular network and display important functions in bone homeostasis, phosphate metabolism and mechanical transduction. Several proteins strongly expressed by osteocytes are involved in these processes, e.g., sclerostin, DMP-1, PHEX, FGF23 and MEPE, while others are upregulated during differentiation of osteoblasts into osteocytes, e.g., osteocalcin and E11. The receptor-type protein tyrosine phosphatase µ (RPTPµ) has been described to be expressed in cells which display a cellular network, e.g., endothelial and neuronal cells, and is implied in mechanotransduction. In a capillary outgrowth assay using metatarsals derived from RPTPµ-knock-out/LacZ knock-in mice, we observed that the capillary structures grown out of the metatarsals were stained blue, as expected. Surprisingly, cells within the metatarsal bone tissue were positive for LacZ activity as well, indicating that RPTPµ is also expressed by osteocytes. Subsequent histochemical analysis showed that within bone, RPTPµ is expressed exclusively in early-stage osteocytes. Analysis of bone marrow cell cultures revealed that osteocytes are present in the nodules and an enzymatic assay enabled the quantification of the amount of osteocytes. No apparent bone phenotype was observed when tibiae of RPTPµ-knock-out/LacZ knock-in mice were analyzed by µCT at several time points during aging, although a significant reduction in cortical bone was observed in RPTPµ-knock-out/LacZ knock-in mice at 20 weeks. Changes in trabecular bone were more subtle. Our data show that RPTPµ is a new marker for osteocytes.


Assuntos
Ossos do Metatarso/citologia , Osteócitos/enzimologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Biomarcadores , Células da Medula Óssea/enzimologia , Osso e Ossos/diagnóstico por imagem , Fator de Crescimento de Fibroblastos 23 , Técnicas de Introdução de Genes , Histocitoquímica , Mecanotransdução Celular , Ossos do Metatarso/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Osteogênese , Tomografia Computadorizada por Raios X
2.
Arterioscler Thromb Vasc Biol ; 29(3): 372-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19096001

RESUMO

OBJECTIVE: The sensitivity of platelets to aggregating agents increases when low-density lipoprotein (LDL) binds to apolipoprotein E receptor 2' (apoER2'), triggering activation of p38MAPK and formation of thromboxane A2. LDL signaling is terminated by PECAM-1 through recruitment and activation of the Ser/Thr protein phosphatase PP2A, but platelets remain unresponsive to LDL when PECAM-1 activation disappears. We report a second mechanism that halts LDL signaling and in addition lowers platelet responsiveness to aggregating agents. METHODS AND RESULTS: After a first stimulation with LDL, platelets remain unresponsive to LDL for 60 minutes, despite normal apoER2' activation by a second dose of LDL. A possible cause is persistent activation of the tyrosine phosphatases SHP-1 and SHP-2, which may not only block a second activation of p38MAPK, PECAM-1, and PP2A by LDL but also seem to reduce aggregation by TRAP, collagen, and ADP. CONCLUSION: These findings reveal that p38MAPK phosphorylation and platelet activation by LDL are suppressed by two mechanisms: (1) short activation of PECAM-1/PP2A, and (2) prolonged activation of SHP-1 and SHP-2. Activation of SHP-1 and SHP-2 is accompanied by reduced responsiveness to aggregating agents, which--if present in vivo--would make LDL an aggregation inhibitor during prolonged contact with platelets.


Assuntos
Plaquetas/enzimologia , Lipoproteínas LDL/metabolismo , Agregação Plaquetária , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais , Difosfato de Adenosina/metabolismo , Colágeno/metabolismo , Regulação para Baixo , Humanos , Proteínas Relacionadas a Receptor de LDL , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteína Fosfatase 2/metabolismo , Receptores de Lipoproteínas/metabolismo , Receptores de Trombina/metabolismo , Tromboxano A2/metabolismo , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Biol Chem ; 279(50): 52526-34, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15459198

RESUMO

Binding of low density lipoprotein (LDL) to platelets enhances platelet responsiveness to various aggregation-inducing agents. However, the identity of the platelet surface receptor for LDL is unknown. We have previously reported that binding of the LDL component apolipoprotein B100 to platelets induces rapid phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Here, we show that LDL-dependent activation of this kinase is inhibited by receptor-associated protein (RAP), an inhibitor of members of the LDL receptor family. Confocal microscopy revealed a high degree of co-localization of LDL and a splice variant of the LDL receptor family member apolipoprotein E receptor-2 (apoER2') at the platelet surface, suggesting that apoER2' may contribute to LDL-induced platelet signaling. Indeed, LDL was unable to induce p38MAPK activation in platelets of apoER2-deficient mice. Furthermore, LDL bound efficiently to soluble apoER2', and the transient LDL-induced activation of p38MAPK was mimicked by an anti-apoER2 antibody. Association of LDL to platelets resulted in tyrosine phosphorylation of apoER2', a process that was inhibited in the presence of PP1, an inhibitor of Src-like tyrosine kinases. Moreover, phosphorylated but not native apoER2' co-precipitated with the Src family member Fgr. This suggests that exposure of platelets to LDL induces association of apoER2' to Fgr, a kinase that is able to activate p38MAPK. In conclusion, our data indicate that apoER2' contributes to LDL-dependent sensitization of platelets.


Assuntos
Plaquetas/metabolismo , Lipoproteínas LDL/sangue , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/sangue , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Ativação Enzimática , Técnicas In Vitro , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Ligação Proteica , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de Lipoproteínas/deficiência , Receptores de Lipoproteínas/genética , Receptores Depuradores , Receptores Depuradores Classe B , Transdução de Sinais , Tirosina/química , Quinases da Família src/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...