Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 19(1): 67, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970377

RESUMO

BACKGROUND: The heterologous expression of isopentenyl transferase (IPT) under the transcriptional control of the senescence-associated receptor-like kinase (SARK) promoter delayed cellular senescence and, through it, increased drought tolerance in plants. To evaluate the effect of pSARK::IPT expression in bread wheat, six independent transgenic events were obtained through the biolistic method and evaluated transgene expression, phenology, grain yield and physiological biomass components in plants grown under both drought and well-irrigating conditions. Experiments were performed at different levels: (i) pots and (ii) microplots inside a biosafety greenhouse, as well as under (iii) field conditions. RESULTS: Two transgenic events, called TR1 and TR4, outperformed the wild-type control under drought conditions. Transgenic plants showed higher yield under both greenhouse and field conditions, which was positively correlated to grain number (given by more spikes and grains per spike) than wild type. Interestingly, this yield advantage of the transgenic events was observed under both drought and well-watered conditions. CONCLUSIONS: The results obtained allow us to conclude that the SARK promoter-regulated expression of the IPT gene in bread wheat not only reduced the yield penalty produced by water stress but also led to improved productivity under well-watered conditions.

2.
Physiol Plant ; 173(1): 223-234, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33629739

RESUMO

Cadmium is one of the most important contaminants and it induces severe plant growth restriction. In this study, we analyzed the metabolic changes associated with root growth restriction caused by cadmium in the early seminal root apex of wheat. Our study included two genotypes: the commercial variety ProINTA Federal (WT) and the PSARK ::IPT (IPT) line which exhibit high-grade yield performance under water deficit. Root tips of seedlings grown for 72 h without or with 10 µM CdCl2 (Cd-WT and Cd-IPT) were compared. Root length reduction was more severe in Cd-WT than Cd-IPT. Cd decreased superoxide dismutase activity in both lines and increased catalase activity only in the WT. In Cd-IPT, ascorbate and guaiacol peroxidase activities raised compared to Cd-WT. The hormonal homeostasis was altered by the metal, with significant decreases in abscisic acid, jasmonic acid, 12-oxophytodienoic acid, gibberellins GA20, and GA7 levels. Increases in flavonoids and phenylamides were also found. Root growth impairment was not associated with a decrease in expansin (EXP) transcripts. On the contrary, TaEXPB8 expression increased in the WT treated by Cd. Our findings suggest that the line expressing the PSARK ::IPT construction increased the homeostatic range to cope with Cd stress, which is visible by a lesser reduction of the root elongation compared to WT plants. The decline of root growth produced by Cd was associated with hormonal imbalance at the root apex level. We hypothesize that activation of phenolic secondary metabolism could enhance antioxidant defenses and contribute to cell wall reinforcement to deal with Cd toxicity.


Assuntos
Cádmio , Triticum , Alquil e Aril Transferases , Antioxidantes , Cádmio/toxicidade , Catalase , Raízes de Plantas/genética , Plântula/genética , Superóxido Dismutase , Triticum/genética
3.
J Biotechnol ; 220: 66-77, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26784988

RESUMO

Senescence can be delayed in transgenic plants overexpressing the enzyme isopentenyltransferase (IPT) due to stress-induced increased levels of endogenous cytokinins. This trait leads to sustained photosynthetic activity and improved tolerance to abiotic stress. The aim of this study was to generate and characterize transgenic plants of maize (Zea mays L.) transformed with the IPT gene sequence under the regulation of SARK promoter (protein kinase receptor-associated senescence). Three independent transgenic events and their segregating null controls were evaluated in two watering regimes (WW: well watered; WD: water deficit) imposed for two weeks around anthesis. Our results show that the WD treatment induced IPT expression with the concomitant increase in cytokinin levels, which prolonged the persistence of total green leaf area, and maintained normal photosynthetic rate and stomatal conductance. These trends were accompanied by a minor decrease in number of grains per plant, individual grain weight and plant grain yield as compared to WW plants. Plants expressing the IPT gene under WD had PGR, anthesis and silking dates and biomass levels similar to WW plants. Our results demonstrate that expression of the IPT gene under the regulation of the SARK promoter helps improve productivity under WD conditions in C4 plants like maize.


Assuntos
Alquil e Aril Transferases/genética , Desidratação/metabolismo , Zea mays/enzimologia , Zea mays/genética , Ácido Abscísico/metabolismo , Alquil e Aril Transferases/metabolismo , Biomassa , Southern Blotting/métodos , Clorofila/metabolismo , Ciclopentanos/metabolismo , Citocininas/metabolismo , Desidratação/genética , Grão Comestível/crescimento & desenvolvimento , Oxilipinas/metabolismo , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas , Solo/química , Estresse Fisiológico , Água/metabolismo , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...