Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Genomics ; 22(5): 353-362, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35283666

RESUMO

Background: Plant yield closely depends on its environment and is negatively affected by abiotic stress conditions like drought, salinity, heat, and cold. Analysis of the stress-inducible genes in Arabidopsis has previously shown that CCGAC and CATGTG play a crucial role in controlling the gene expression through the binding of DREB/CBF and NAC TFs under various stress conditions, mainly drought and salinity. Methods: The pattern of these motifs is conserved, which has been analyzed in this study to find the mechanism of gene expression through spacer specificity, inter motif distance preference, functional analysis, and statistical analysis for four different plants, namely Oryza sativa, Triticum aestivum, Arabidopsis thaliana, and Glycine max. Results: The spacer frequency analysis has shown a preference for particular spacer lengths among four genomes. The spacer specificity at all the spacer lengths which predicts dominance of particular base pairs over others, was analyzed to find the preference of the sequences in the flanking region. Functional analysis on stress-regulated genes for saline, osmotic, and heat stress clearly shows that these motif frequencies with inter motif distance (0-30) in the promoter region of Arabidopsis are highest in genes which are upregulated by saline and osmotic stress and downregulated by heat stress. Conclusion: Microarray data were analyzed to confirm the role of both motifs in stress response pathways. Transcription factors seem to prefer larger motif size with repeated CCGAC and CATGTG elements. The common preference for one spacer was further validated through Box and Whisker's statistical analysis.

2.
Front Plant Sci ; 11: 603380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510748

RESUMO

Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...