Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Comput Vis (2013) ; 8331: 138-147, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-31915754

RESUMO

Parsing 2D radiographs into anatomical regions is a challenging task with many applications. In the clinic, scans routinely include anterior-posterior (AP) and lateral (LAT) view radiographs. Since these orthogonal views provide complementary anatomic information, an integrated analysis can afford the greatest localization accuracy. To solve this integration we propose automatic landmark candidate detection, pruned by a learned geometric consensus detector model and refined by fitting a hierarchical active appearance organ model (H-AAM). Our main contribution is twofold. First, we propose a probabilistic joint consensus detection model which learns how landmarks in either or both views predict landmark locations in a given view. Second, we refine landmarks by fitting a joint H-AAM that learns how landmark arrangement and image appearance can help predict across views. This increases accuracy and robustness to anatomic variation. All steps require just seconds to compute and compared to processing the scouts separately, joint processing reduces mean landmark distance error from 27.3 mm to 15.7 mm in LAT view and from 12.7 mm to 11.2 mm in the AP view. The errors are comparable to human expert inter-observer variability and suitable for clinical applications such as personalized scan planning for dose reduction. We assess our method using a database of scout CT scans from 93 subjects with widely varying pathology.

2.
Med Phys ; 39(7): 4245-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22830758

RESUMO

PURPOSE: X-ray computed tomography angiography (CTA) is the modality of choice to noninvasively monitor and diagnose heart disease with coronary artery health and stenosis detection being of particular interest. Reliable, clinically relevant coronary artery imaging mandates high spatiotemporal resolution. However, advances in intrinsic scanner spatial resolution (CT scanners are available which combine nearly 900 detector columns with focal spot oversampling) can be tempered by motion blurring, particularly in patients with unstable heartbeats. As a result, recently numerous methods have been devised to improve coronary CTA imaging. Solutions involving hardware, multisector algorithms, or ß-blockers are limited by cost, oversimplifying assumptions about cardiac motion, and populations showing contraindications to drugs, respectively. This work introduces an inexpensive algorithmic solution that retrospectively improves the temporal resolution of coronary CTA without significantly affecting spatial resolution. METHODS: Given the goal of ruling out coronary stenosis, the method focuses on "deblurring" the coronary arteries. The approach makes no assumptions about cardiac motion, can be used on exams acquired at high heart rates (even over 75 beats/min), and draws on a fast and accurate three-dimensional (3D) nonrigid bidirectional labeled point matching approach to estimate the trajectories of the coronary arteries during image acquisition. Motion compensation is achieved by employing a 3D warping of a series of partial reconstructions based on the estimated motion fields. Each of these partial reconstructions is created from data acquired over a short time interval. For brevity, the algorithm "Subphasic Warp and Add" (SWA) reconstruction. RESULTS: The performance of the new motion estimation-compensation approach was evaluated by a systematic observer study conducted using nine human cardiac CTA exams acquired over a range of average heart rates between 68 and 86 beats/min. Algorithm performance was based-lined against exams reconstructed using standard filtered-backprojection (FBP). The study was performed by three experienced reviewers using the American Heart Association's 15-segment model. All vessel segments were evaluated to quantify their viability to allow a clinical diagnosis before and after motion estimation-compensation using SWA. To the best of the authors' knowledge this is the first such observer study to show that an image processing-based software approach can improve the clinical diagnostic value of CTA for coronary artery evaluation. CONCLUSIONS: Results from the observer study show that the SWA method described here can dramatically reduce coronary artery motion and preserve real pathology, without affecting spatial resolution. In particular, the method successfully mitigated motion artifacts in 75% of all initially nondiagnostic coronary artery segments, and in over 45% of the cases this improvement was enough to make a previously nondiagnostic vessel segment clinically diagnostic.


Assuntos
Algoritmos , Artefatos , Angiografia Coronária/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Angiografia Coronária/instrumentação , Humanos , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
3.
IEEE Trans Med Imaging ; 28(8): 1208-16, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19211343

RESUMO

Nonrigid image registration methods using intensity-based similarity metrics are becoming increasingly common tools to estimate many types of deformations. Nonrigid warps can be very flexible with a large number of parameters and gradient optimization schemes are widely used to estimate them. However, for large datasets, the computation of the gradient of the similarity metric with respect to these many parameters becomes very time consuming. Using a small random subset of image voxels to approximate the gradient can reduce computation time. This work focuses on the use of importance sampling to reduce the variance of this gradient approximation. The proposed importance sampling framework is based on an edge-dependent adaptive sampling distribution designed for use with intensity-based registration algorithms. We compare the performance of registration based on stochastic approximations with and without importance sampling to that using deterministic gradient descent. Empirical results, on simulated magnetic resonance brain data and real computed tomography inhale-exhale lung data from eight subjects, show that a combination of stochastic approximation methods and importance sampling accelerates the registration process while preserving accuracy.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/anatomia & histologia , Simulação por Computador , Humanos , Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Mecânica Respiratória/fisiologia , Tomografia Computadorizada por Raios X
4.
Med Phys ; 35(2): 424-34, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18383662

RESUMO

Evaluation of functional magnetic resonance imaging (fMRI) as a reliable clinical imaging tool requires accurate assessment and correction of head motion artifacts. As the correction of bulk head motion is vital, the loss of signal strength from the confounding effect of head motion on spin magnetization may be an additional factor in activation analysis error. This study focuses on the evaluation and correction of the spin saturation artifact that occurs when parts of adjacent slices are selected due to changing head positions in single-shot multislice acquisitions. As a consequence of head movement, the acquired slices constituting a fMRI volume are no longer parallel to each other and the spin magnetization in fMRI voxels becomes dependent on head motion history. Motion corrections applying the same rigid motion estimates to all the slices in a volume may not be a reasonable approximation in cases where the magnitude of head motion exceeds a subvoxel range. For realistic ranges of motion in fMRI, an accurate estimate of rigid motion parameters for each echo planar imaging (EPI) slice is essential to correctly register voxel intensities. Previously we have implemented the map-slice-to-volume (MSV) motion correction method that maps each slice in a time series onto a reference anatomical volume, which proved to be effective in improving activation detection. To correctly evaluate the motion dependence of spin magnetization, each voxel is tracked with movement history that is available from MSV motion estimates. Relatively low in resolution, EPI voxels are composed of varying mixtures of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) and variations in the tissue composition give rise to voxel intensities that are functions of tissue T1 properties. We have developed a weighted-average spin saturation (WASS) correction method that can handle full rigid motion and account for the melange of different brain tissue isochromats at each EPI voxel location. We evaluated the effect of spin saturation artifacts and the performance of the WASS correction using simulated fMRI time series synthesized with known true activation, motion, and the associated spin saturation artifact. Two different ranges of head rotations, [-5,5] and [-2,2] deg, were introduced and the effect of the spin saturation artifact was quantified to show 18% and 13% reduction in activation detection rate, respectively. Following the MSV motion and WASS correction, results indicate that WASS correction can improve activation detection by 17% relative to MSV only correction.


Assuntos
Artefatos , Potenciais Evocados/fisiologia , Movimentos da Cabeça , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Marcadores de Spin
5.
Magn Reson Imaging ; 26(2): 147-59, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17662548

RESUMO

There has been vast interest in determining the feasibility of functional magnetic resonance imaging (fMRI) as an accurate method of imaging brain function for patient evaluations. The assessment of fMRI as an accurate tool for activation localization largely depends on the software used to process the time series data. The performance evaluation of different analysis tools is not reliable unless truths in motion and activation are known. Lack of valid truths has been the limiting factor for comparisons of different algorithms. Until now, currently available phantom data do not include comprehensive accounts of head motion. While most fMRI studies assume no interslice motion during the time series acquisition in fMRI data acquired using a multislice and single-shot echo-planar imaging sequence, each slice is subject to a different set of motion parameters. In this study, in addition to known three-dimensional motion parameters applied to each slice, included in the time series computation are geometric distortion from field inhomogeneity and spin saturation effect as a result of out-of-plane head motion. We investigated the effect of these head motion-related artifacts and present a validation of the mapping slice-to-volume (MSV) algorithm for motion correction and activation detection against the known truths. MSV was evaluated, and showed better performance in comparison with other widely used fMRI data processing software, which corrects for head motion with a volume-to-volume realignment method. Furthermore, improvement in signal detection was observed with the implementation of the geometric distortion correction and spin saturation effect compensation features in MSV.


Assuntos
Mapeamento Encefálico/métodos , Simulação por Computador , Movimentos da Cabeça , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Humanos , Imagens de Fantasmas , Software
6.
Artigo em Inglês | MEDLINE | ID: mdl-17354782

RESUMO

Head motion is a significant source of error in fMRI activation detection and a common approach is to apply 3D volumetric rigid body motion correction techniques. However, in 2D multislice fMRI, each slice may have a distinct set of motion parameters due to inter-slice motion. Here, we apply an automated mutual information based slice-to-volume rigid body registration technique on time series data synthesized from a T2 MRI brain dataset with simulated motion, functional activation, noise and geometric distortion. The map-slice-to-volume (MSV) technique was previously applied to patient data without ground truths for motion and activation regions. In this study, the activation images and area under the receiver operating characteristic curves for various time series datasets indicate that the MSV registration improves the activation detection capability when compared to results obtained from Statistical Parametric Mapping (SPM). The effect of temporal median filtering of motion parameters on activation detection performance was also investigated.


Assuntos
Algoritmos , Artefatos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Encéfalo/anatomia & histologia , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Movimento , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...