Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(6): 111615, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351397

RESUMO

Mixed hematopoietic chimerism can promote immune tolerance of donor-matched transplanted tissues, like pancreatic islets. However, adoption of this strategy is limited by the toxicity of standard treatments that enable donor hematopoietic cell engraftment. Here, we address these concerns with a non-myeloablative conditioning regimen that enables hematopoietic chimerism and allograft tolerance across fully mismatched major histocompatibility complex (MHC) barriers. Treatment with an αCD117 antibody, targeting c-Kit, administered with T cell-depleting antibodies and low-dose radiation permits durable multi-lineage chimerism in immunocompetent mice following hematopoietic cell transplant. In diabetic mice, co-transplantation of donor-matched islets and hematopoietic cells durably corrects diabetes without chronic immunosuppression and no appreciable evidence of graft-versus-host disease (GVHD). Donor-derived thymic antigen-presenting cells and host-derived peripheral regulatory T cells are likely mediators of allotolerance. These findings provide the foundation for safer bone marrow conditioning and cell transplantation regimens to establish hematopoietic chimerism and islet allograft tolerance.


Assuntos
Diabetes Mellitus Experimental , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Transplante Homólogo , Medula Óssea , Diabetes Mellitus Experimental/terapia , Condicionamento Pré-Transplante , Transplante de Medula Óssea , Tolerância Imunológica
2.
Science ; 377(6606): 660-666, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926021

RESUMO

The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified ß-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, ß-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.


Assuntos
Bacteroidetes , Linfócitos T CD4-Positivos , Colite , Mucosa Intestinal , beta-N-Acetil-Hexosaminidases , Animais , Bacteroidetes/enzimologia , Bacteroidetes/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8/imunologia , Colite/imunologia , Colite/microbiologia , Modelos Animais de Doenças , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , beta-N-Acetil-Hexosaminidases/imunologia
3.
Sci Rep ; 12(1): 9033, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641781

RESUMO

Improved models of experimental diabetes are needed to develop cell therapies for diabetes. Here, we introduce the B6 RIP-DTR mouse, a model of experimental diabetes in fully immunocompetent animals. These inbred mice harbor the H2b major histocompatibility complex (MHC), selectively express high affinity human diphtheria toxin receptor (DTR) in islet ß-cells, and are homozygous for the Ptprca (CD45.1) allele rather than wild-type Ptprcb (CD45.2). 100% of B6 RIP-DTR mice rapidly became diabetic after a single dose of diphtheria toxin, and this was reversed indefinitely after transplantation with islets from congenic C57BL/6 mice. By contrast, MHC-mismatched islets were rapidly rejected, and this allotransplant response was readily monitored via blood glucose and graft histology. In peripheral blood of B6 RIP-DTR with mixed hematopoietic chimerism, CD45.2 BALB/c donor blood immune cells were readily distinguished from host CD45.1 cells by flow cytometry. Reliable diabetes induction and other properties in B6 RIP-DTR mice provide an important new tool to advance transplant-based studies of islet replacement and immunomodulation to treat diabetes.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Imunologia de Transplantes
4.
J Neural Eng ; 17(4): 044001, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32604074

RESUMO

The vast majority of techniques to study the physiology of the nervous system involve inserting probes into the brain for stimulation, recording, or sampling. Research is increasingly uncovering the fine microstructure of the brain, each of its regions with dedicated functions. Accurate knowledge of the placement of probes interrogating these regions is critical. We have developed a customizable concentric marking electrode (CME) consisting of an iron core within a 125 µm-stainless steel (SS) sheath for co-localization of targeted regions in the brain. We used a dielectric layer stack of SiO2, Al2O3, SiO2 to electrically encapsulate the iron core and minimize exposure area to avoid significant increases in inflammatory response triggered by the probes. The CME can record multi-neuronal extracellular firing patterns. Appropriate electrical polarity of the iron and SS components controls the deposition of iron microdeposits on brain tissue. We show that in vivo labels by this method can be as small as 100 µm, visible via noninvasive magnetic resonance imaging (MRI) as well as post-mortem histology, and illustrate how deposit size can be tuned by varying stimulus parameters. We targeted the CA3 area of the hippocampus in adult rats and demonstrate that iron microdeposits are remarkably stable and persist up to 10 months post-deposition. Using a single probe for recording and marking avoids inaccuracies with re-insertion of separate probes and utilizes iron microdeposits as valuable fiducial markers in vivo and ex vivo.


Assuntos
Encéfalo , Dióxido de Silício , Animais , Encéfalo/diagnóstico por imagem , Eletrodos , Hipocampo , Imageamento por Ressonância Magnética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...