Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167458, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37777124

RESUMO

Biofilms form on any available surface and, depending on the characteristics of the material and the environmental conditions, biodegradation can take place. We compared the bacterial composition of polyhydroxybutyrate (PHB)-related biofilm communities from marine ex-situ and in-situ tests to assess the differences in diversity and abundance between these two biofilms. This comparison will help to better assess the transferability of tank tests to real-life scenarios. The in-situ tests were set up in the Mediterranean Sea on the Island of Elba, Italy where PHB-tensile bars were lodged in the sediments. This created a water-exposed aerobic and mud-planted anaerobic scenario. The ex-situ tests were modeled after in-situ tests and performed in temperature-controlled tanks. The PHB-related biofilms were harvested after 240 days of exposure along with planktonic bacteria, and particle- and sediment-related biofilm. The bacterial composition was elucidated using 16S rDNA sequencing. Biofilms harvested from the in-situ test were more diverse, less even, and contained more rare species compared to biofilms from the ex-situ test. The PHB-related biofilm was characterized by a higher abundance of the bacterial order Desulfobacterales. The composition of PHB-related biofilm varied significantly between the two tests and between aerobic and anaerobic conditions. The composition of PHB-related biofilm was significantly different from planktonic bacteria, particle, and sediment-related biofilm, showing the influence of PHB on the biofilm composition. Thus, the ex-situ tank test for PHB degradation cannot, in terms of bacterial composition, simulate the in-situ conditions to their full extent.


Assuntos
Bactérias , Biofilmes , Bactérias/genética , Água , Temperatura , Plâncton
2.
J Biosci Bioeng ; 129(5): 595-602, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31836378

RESUMO

Polyhydroxyalkanoates (PHAs) present an eco-friendly alternative for conventional plastics. Industrial wastewater from the food industry is a copious source of organic carbon that can be recovered in the form of PHA. However, the wastewater composition varies considerably among the different industries demanding for an industry-specific investigation of the PHA production process. Wastewater from the yeast industry, besides its high concentration in organic carbon, also contains a high ammonium concentration which might decrease the PHA production. Thus, this study aims to investigate PHA production using yeast industry wastewater via an enriched mixed microbial culture (MMC). A less explored cultivation strategy, i.e., continuous cultivation for PHA production was evaluated and compared to the widely used batch cultivation. PHA accumulating MMC was enriched using a sequencing batch reactor (SBR) operated under aerobic dynamic feeding. An MMC dominated by the Thauera species was successfully enriched in the SBR. Experimental results showed that ammonium is indeed required for PHA accumulation and the complete absence of ammonium negatively affects the accumulation process. Using wastewater, batch and continuous feeding strategies, respectively, yielded the PHA accumulation of 72 % and 65 % per dry cell weight. Despite the slightly lower PHA accumulation with continuous cultivation, four times more biomass growth was produced. Consequently, higher theoretical PHA production (270 t/year) can be expected using continuous cultivation in half of the reactor volume (45 m3). Therefore, this study asserts the viability of continuous cultivation as a feasible investigatory tool and PHA production strategy.


Assuntos
Saccharomyces cerevisiae/metabolismo , Águas Residuárias/química , Compostos de Amônio/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Biotransformação , Meios de Cultura/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...