Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(6): pgae213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881843

RESUMO

Intrinsic impediments, namely weak mechanical strength, low ionic conductivity, low electrochemical performance, and stability have largely inhibited beyond practical applications of hydrogels in electronic devices and remains as a significant challenge in the scientific world. Here, we report a biospecies-derived genomic DNA hybrid gel electrolyte with many synergistic effects, including robust mechanical properties (mechanical strength and elongation of 6.98 MPa and 997.42%, respectively) and ion migration channels, which consequently demonstrated high ionic conductivity (73.27 mS/cm) and superior electrochemical stability (1.64 V). Notably, when applied to a supercapacitor the hybrid gel-based devices exhibit a specific capacitance of 425 F/g. Furthermore, it maintained rapid charging/discharging with a capacitance retention rate of 93.8% after ∼200,000 cycles while exhibiting a maximum energy density of 35.07 Wh/kg and a maximum power density of 193.9 kW/kg. This represents the best value among the current supercapacitors and can be immediately applied to minicars, solar cells, and LED lightning. The widespread use of DNA gel electrolytes will revolutionize human efforts to industrialize high-performance green energy.

2.
Crit Rev Food Sci Nutr ; : 1-32, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764334

RESUMO

Cultured meat is expected to become an important material for future food production; however, contrary to initial expectations, the full-scale industrialization of cultured meat is slow and the actual level and opened technology amount is very limited. This study reviews the publicly available technologies of cultured meat and suggests future developmental directions and research agenda. As a result of analyzing papers, patents, and press releases published over the past 10 years, it was found that cultured meat production technology is still at the prototype production level. This is because most papers published are about culture medium and scaffold development, culture conditions, and there is almost no research on finished cultured meat products. Worldwide, most of the filed patents are for producing cultured meat principles; most of them do not use food-grade materials and are not economically feasible for industrialization. Therefore, future research on the industrialization of cultured meat should focus on effective acquisition technologies for satellite cells; cell lineage and undifferentiated state maintenance technologies; the development of serum-free media and culture devices; the prevention of genetic modification, safety verification, and mass production. Furthermore, basic research on mechanisms and influencing factors related to cultured meat production is warranted.

3.
J Control Release ; 368: 453-465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447812

RESUMO

Fibroblasts (hDFs) are widely employed for skin regeneration and the treatment of various skin disorders, yet research were rarely investigated about restoration of diminished therapeutic efficacy due to cell senescence. The application of stem cell and stem cell-derived materials, exosomes, were drawn attention for the restoration functionality of fibroblasts, but still have limitation for unintended side effect or low yield. To advance, stem cell-derived nanovesicle (NV) have developed for effective therapeutic reagents with high yield and low risk. In this study, we have developed a method using red light irradiated human adipose-derived stem cells (hADSCs) derived NV (R-NVs) for enhancing the therapeutic efficacy and rejuvenating hDFs. Through red light irradiation, we were able to significantly increase the content of stemness factors and angiogenic biomolecules in R-NVs. Treatment with these R-NVs was found to enhance the migration ability and leading to rejuvenation of old hDFs to levels similar to those of young hDFs. In subsequent in vivo experiments, the treatment of old hDFs with R-NVs demonstrated a superior skin wound healing effect, surpassing that of young hDFs. In summary, this study successfully induced rejuvenation and leading to increased therapeutic efficacy to R-NVs treated old hDFs previously considered as biowaste.


Assuntos
Luz Vermelha , Rejuvenescimento , Humanos , Recuperação de Função Fisiológica , Células-Tronco , Fibroblastos
4.
Biomater Res ; 28: 0007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439926

RESUMO

Myocardial infarction (MI) is treated with stem cell transplantation using various biomaterials and methods, such as stem cell/spheroid injections, cell sheets, and cardiac patches. However, current treatment methods have some limitations, including low stem cell engraftment and poor therapeutic effects. Furthermore, these methods cause secondary damage to heart due to injection and suturing to immobilize them in the heart, inducing side effects. In this study, we developed stem cell spheroid-laden 3-dimensional (3D) patches (S_3DP) with biosealant to treat MI. This 3D patch has dual modules, such as open pockets to directly deliver the spheroids with their paracrine effects and closed pockets to improve the engraft rate by protecting the spheroid from harsh microenvironments. The spheroids formed within S_3DP showed increased viability and expression of angiogenic factors compared to 2-dimensional cultured cells. We also fabricated gelatin-based tissue adhesive biosealants via a thiol-ene reaction and disulfide bond formation. This biosealant showed stronger tissue adhesiveness than commercial fibrin glue. Furthermore, we successfully applied S_3DP using a biosealant in a rat MI model without suturing in vivo, thereby improving cardiac function and reducing heart fibrosis. In summary, S_3DP and biosealant have excellent potential as advanced stem cell therapies with a sutureless approach to MI treatment.

5.
Bioeng Transl Med ; 8(5): e10560, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693062

RESUMO

Light-based therapy has been reported as a potential preconditioning strategy to induce intracellular reactive oxygen species (ROS) signaling and improve the angiogenic properties of various types of cells. However, bio-stimulation mechanisms of light therapy in terms of ROS-heat shock proteins (HSPs) mediated anti-apoptotic and angiogenic pathways in human adult stem cells have not been fully delineated yet. Commonly used light sources such as light-emitting diode (LED) and laser are accompanied by drawbacks, such as phototoxicity, thermal damage, and excessive ROS induction, so the role and clinical implications of light-induced HSPs need to be investigated using a heat-independent light source. Here, we introduced organic LED (OLED) at 610 nm wavelength as a new light source to prevent thermal effects from interfering with the expression of HSPs. Our results showed that light therapy using OLED significantly upregulated anti-apoptotic and angiogenic factors in human bone marrow mesenchymal stem cells (hMSCs) at both gene and protein levels via the activation of HSP90α and HSP27, which were stimulated by ROS. In a mouse wound-closing model, rapid recovery and improved re-epithelization were observed in the light-treated hMSCs transplant group. This study demonstrates that the upregulation of Akt (protein kinase B)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, caused by HSP90α and HSP27 expression, is the mechanism behind the anti-apoptotic and angiogenic effects of OLED treatment on stem cells.

6.
Tissue Eng Regen Med ; 20(4): 621-635, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269439

RESUMO

Cell-based therapies have been used as promising treatments for several untreatable diseases. However, cell-based therapies have side effects such as tumorigenesis and immune responses. To overcome these side effects, therapeutic effects of exosomes have been researched as replacements for cell-based therapies. In addition, exosomes reduced the risk that can be induced by cell-based therapies. Exosomes contain biomolecules such as proteins, lipids, and nucleic acids that play an essential role in cell-cell and cell-matrix interactions during biological processes. Since the introduction of exosomes, those have been proven perpetually as one of the most effective and therapeutic methods for incurable diseases. Much research has been conducted to enhance the properties of exosomes, including immune regulation, tissue repair, and regeneration. However, yield rate of exosomes is the critical obstacle that should be overcome for practical cell-free therapy. Three-dimensional (3D) culture methods are introduced as a breakthrough to get higher production yields of exosomes. For example, hanging drop and microwell were well known 3D culture methods and easy to use without invasiveness. However, these methods have limitation in mass production of exosomes. Therefore, a scaffold, spinner flask, and fiber bioreactor were introduced for mass production of exosomes isolated from various cell types. Furthermore, exosomes treatments derived from 3D cultured cells showed enhanced cell proliferation, angiogenesis, and immunosuppressive properties. This review provides therapeutic applications of exosomes using 3D culture methods.


Assuntos
Exossomos , Exossomos/metabolismo , Células Cultivadas , Cicatrização
7.
Bioeng Transl Med ; 8(3): e10462, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206233

RESUMO

We used a blue organic light-emitting diode (bOLED) to increase the paracrine factors secreted from human adipose-derived stem cells (hADSCs) for producing conditioned medium (CM). Our results showed that while the bOLED irradiation promotes a mild-dose reactive oxygen generation that enhances the angiogenic paracrine secretion of hADSCs, it does not induce phototoxicity. The bOLED enhances paracrine factors via a cell-signaling mechanism involving hypoxia-inducible factor 1 alpha. This study demonstrated that the CM resulting from bOLED treatment shows improved therapeutic effects on mouse wound-healing models. This method contributes to overcoming the barriers to stem-cell therapies, including the toxicity and low yields from other methods such as nanoparticles, synthetic polymers, and even cell-derived vesicles.

8.
Biomater Res ; 27(1): 51, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208764

RESUMO

BACKGROUND: Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods. METHODS: In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids. RESULTS: The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method. CONCLUSION: Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.

9.
J Photochem Photobiol B ; 243: 112714, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084656

RESUMO

BACKGROUND: High-energy irradiation eliminates cancer cells by destroying their genetic components. However, there are several side effects from doing this, such as fatigue, dermatitis, and hair loss, which remain obstacles to this treatment. Here, we propose a moderate method that uses low-energy white light from a light-emitting diode (LED) to selectively inhibit cancer cell proliferation without affecting normal cells. METHODS: The association between LED irradiation and cancer cell growth arrest was evaluated based on cell proliferation, viability, and apoptotic activity. Immunofluorescence, polymerase chain reaction, and western blotting were performed in vitro and in vivo to identify the metabolism related to the inhibition of HeLa cell proliferation. RESULTS: LED irradiation aggravated the defective p53 signaling pathway and induced cell growth arrest in cancer cells. Consequently, cancer cell apoptosis was induced by the increased DNA damage. Additionally, LED irradiation inhibited the proliferation of cancer cells by suppressing the MAPK pathway. Furthermore, the suppression of cancer growth by the regulation of p53 and MAPK was observed in cancer-bearing mice irradiated with LED. CONCLUSIONS: Our findings suggest that LED irradiation can suppress cancer cell activity and may contribute to preventing the proliferation of cancer cells after medical surgery without causing side effects.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Células HeLa , Proteína Supressora de Tumor p53/genética , Apoptose , Luz , Proliferação de Células/efeitos da radiação , DNA
10.
Bioeng Transl Med ; 8(2): e10438, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925707

RESUMO

Conventional 3D cell culture methods require a comprehensive complement in labor-intensive and time-consuming processes along with in vivo circumstantial mimicking. Here, we describe a subaqueous free-standing 3D cell culture (FS) device that can induce the omnidirectional environment and generate ultrafast human adipose-derived stem cells (hADSCs) that efficiently aggregate with compaction using acoustic pressure. The cell culture conditions were optimized using the FS device and identified the underlying molecular mechanisms. Unique phenomena in cell aggregation have led to extraordinary cellular behavior that can upregulate cell compaction, mechanosensitive immune control, and therapeutic angiogenesis. Therefore, we designated the resulting cell aggregates as "pressuroid." Notably, external acoustic stimulation produced by the FS device affected the pressuroids. Furthermore, the pressuroids exhibited upregulation in mechanosensitive genes and proteins, PIEZO1/2. CyclinD1 and PCNA, which are strongly associated with cell adhesion and proliferation, were elevated by PIEZO1/2. In addition, we found that pressuroids significantly increase angiogenic paracrine factor secretion, promote cell adhesion molecule expression, and enhance M2 immune modulation of Thp1 cells. Altogether, we have concluded that our pressuroid would suggest a more effective therapy method for future cell therapy than the conventional one.

11.
ACS Appl Mater Interfaces ; 15(9): 11536-11548, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36811454

RESUMO

Cell sheets and spheroids are cell aggregates with excellent tissue-healing effects. However, their therapeutic outcomes are limited by low cell-loading efficacy and low extracellular matrix (ECM). Preconditioning cells with light illumination has been widely accepted to enhance reactive oxygen species (ROS)-mediated ECM expression and angiogenic factor secretion. However, there are difficulties in controlling the amount of ROS required to induce therapeutic cell signaling. Here, we develop a microstructure (MS) patch that can culture a unique human mesenchymal stem cell complex (hMSCcx), spheroid-attached cell sheets. The spheroid-converged cell sheet structure of hMSCcx shows high ROS tolerance compared to hMSC cell sheets owing to its high antioxidant capacity. The therapeutic angiogenic efficacy of hMSCcx is reinforced by regulating ROS levels without cytotoxicity using light (610 nm wavelength) illumination. The reinforced angiogenic efficacy of illuminated hMSCcx is based on the increased gap junctional interaction by enhanced fibronectin. hMSCcx engraftment is significantly improved in our novel MS patch by means of ROS tolerative structure of hMSCcx, leading to robust wound-healing outcomes in a mouse wound model. This study provides a new method to overcome the limitations of conventional cell sheets and spheroid therapy.


Assuntos
Fibronectinas , Cicatrização , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Cicatrização/fisiologia , Matriz Extracelular/metabolismo , Modelos Animais de Doenças
12.
Adv Mater ; 35(16): e2208989, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36706357

RESUMO

All exogenous nanomaterials undergo rapid biotransformation once injected into the body and fall short of executing the intended purpose. Here, it is reported that copper-deposited ceria nanoparticles (CuCe NPs) exhibit enhanced antioxidant effects over pristine ceria nanoparticles, as the released copper buffers the depletion of glutathione while providing the bioavailable copper as a cofactor for the antioxidant enzyme, superoxide dismutase 1. The upregulated intracellular antioxidants along with the ceria nanoparticles synergistically scavenge reactive oxygen species and promote anti-inflammation and M2 polarization of macrophages by modulating signal transducer and activator of transcription 1 and 6 (STAT1 and STAT6). The therapeutic effect of CuCe NPs is demonstrated in ischemic vascular diseases (i.e., murine models of hindlimb ischemia and myocardial infarction) in which the copper-deposition affords increased perfusion and alleviation in tissue damage. The results provide rationale that metal oxide nanomaterials can be designed in a way to induce the upregulation of specific biological factors for optimal therapeutic performance.


Assuntos
Nanopartículas , Doenças Vasculares , Camundongos , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cobre , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Isquemia , Estresse Oxidativo
13.
Tissue Eng Regen Med ; 20(4): 581-591, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36708468

RESUMO

BACKGROUND: Stem cell-based therapies have been developed to treat various types of wounds. Human adipose-derived stem cells (hADSCs) are used to treat skin wounds owing to their outstanding angiogenic potential. Although recent studies have suggested that stem cell spheroids may help wound healing, their cell viability and retention rate in the wound area require improvement to enhance their therapeutic efficacy. METHODS: We developed a core-shell structured spheroid with hADSCs in the core and human dermal fibroblasts (hDFs) in the outer part of the spheroid. The core-shell structure was formed by continuous centrifugation and spheroid incubation. After optimizing the method for inducing uniform-sized core-shell spheroids, cell viability, cell proliferation, migration, and therapeutic efficacy were evaluated and compared to those of conventional spheroids. RESULTS: Cell proliferation, migration, and involucrin expression were evaluated in keratinocytes. Tubular assays in human umbilical vein endothelial cells were used to confirm the improved skin regeneration and angiogenic efficacy of core-shell spheroids. Core-shell spheroids exhibited exceptional cell viability under hypoxic cell culture conditions that mimicked the microenvironment of the wound area. CONCLUSION: The improvement in retention rate, survival rate, and angiogenic growth factors secretion from core-shell spheroids may contribute to the increased therapeutic efficacy of stem cell treatment for skin wounds.


Assuntos
Pele , Cicatrização , Humanos , Células Cultivadas , Células-Tronco , Células Endoteliais da Veia Umbilical Humana
14.
Tissue Eng Regen Med ; 20(2): 177-198, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36689072

RESUMO

Recently, various attempts have been made to apply diverse types of nanoparticles in biotechnology. Silica nanoparticles (SNPs) have been highlighted and studied for their selective accumulation in diseased parts, strong physical and chemical stability, and low cytotoxicity. SNPs, in particular, are very suitable for use in drug delivery and bioimaging, and have been sought as a treatment for ischemic diseases. In addition, mesoporous silica nanoparticles have been confirmed to efficiently deliver various types of drugs owing to their porous structure. Moreover, there have been innovative attempts to treat ischemic diseases using SNPs, which utilize the effects of Si ions on cells to improve cell viability, migration enhancement, and phenotype modulation. Recently, external stimulus-responsive treatments that control the movement of magnetic SNPs using external magnetic fields have been studied. This review addresses several original attempts to treat ischemic diseases using SNPs, including particle synthesis methods, and presents perspectives on future research directions.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Dióxido de Silício/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Porosidade
15.
Cell Biol Toxicol ; 39(1): 217-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34580808

RESUMO

Low-level light therapy (LLLT) is a safe and noninvasive technique that has drawn attention as a new therapeutic method to treat various diseases. However, little is known so far about the effect of blue light for LLLT due to the generation of reactive oxygen species (ROS) that can cause cell damage. We introduced a blue organic light-emitting diode (bOLED) as a safe and effective light source that could generate a low amount of heat and luminance compared to conventional light sources (e.g., light-emitting diodes). We compared phototoxicity of bOLED light with different light fluences to human adipose-derived stem cells (hADSC). We further explored molecular mechanisms involved in the therapeutic efficacy of bOLED for enhancing angiogenic properties of hADSC, including intracellular ROS control in hADSCs. Using optimum conditions of bOLED light proposed in this study, photobiomodulation and angiogenic properties of hADSCs were enhanced. These findings might open new methods for using blue light in LLLT. Such methods can be implemented in future treatments for ischemic disease.


Assuntos
Adipócitos , Tecido Adiposo , Humanos , Espécies Reativas de Oxigênio , Células-Tronco , Neovascularização Fisiológica
16.
Nanoscale ; 14(44): 16581-16589, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36314744

RESUMO

We report a scalable fabrication method to generate exosome-mimicking nanovesicles (ENVs) by using a biocompatible, cell-binding lipid detergent during cell extrusion. A PEGylated mannosylerythritol lipid (MELPEG) detergent was rationally engineered to strongly associate with phospholipid membranes to increase cell membrane deformability and the corresponding friction force during extrusion and to enhance the dispersibility of ENVs. Compared to cell extrusion without detergent, cell extrusion in the presence of MELPEG increased the ENV production yield by approximately 20 times and cellular protein content per MELPEG-functionalized ENV by approximately 2-fold relative to that of unmodified ENVs. We verified that MELPEG strongly binds to ENV membranes and increases membrane deformability via expansion/swelling while preserving the integrity of the phospholipid bilayer structure. The results highlight that the MELPEG-aided cell extrusion process broadly applies to various cell lines; hence, it could be helpful in the production of ENVs for tissue regeneration, drug delivery, and cancer nanomedicine.


Assuntos
Exossomos , Exossomos/química , Detergentes/análise , Sistemas de Liberação de Medicamentos , Fosfolipídeos , Polietilenoglicóis
17.
Commun Biol ; 5(1): 957, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100628

RESUMO

Conditioned medium (CM) contains various therapeutic molecules produced by cells. However, the low concentration of therapeutic molecules in CM is a major challenge for successful tissue regeneration. Here, we aim to develop a CM enriched in angiogenic paracrine factors for the treatment of ischemic diseases. Combining spheroidal culture and light irradiation significantly upregulates the angiogenic factor expression in human adipose-derived stem cells (hADSCs). Spheroids of light-irradiated hADSCs (SR group) show significantly enhanced expression of angiogenic paracrine factors compared with spheroids without light stimulation. Enhanced viability, migration, and angiogenesis are observed in cells treated with CM derived from the SR group. Furthermore, we performed in vivo experiments using a mouse hindlimb ischemia model; the results demonstrate that CM derived from densely cultured spheroids of light-irradiated hADSCs induced increased angiogenesis in vivo. In conclusion, our proposed approach of using light to stimulate stem cells may overcome the major drawbacks of CM-based therapies.


Assuntos
Adipócitos , Tecido Adiposo , Indutores da Angiogênese , Animais , Meios de Cultivo Condicionados/farmacologia , Humanos , Isquemia/terapia , Neovascularização Patológica , Células-Tronco
18.
Tissue Eng Regen Med ; 19(6): 1161-1168, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36006602

RESUMO

BACKGROUND: Various methods based on gold nanoparticles (AuNPs) have been applied to enhance the photothermal effect. Among these methods, combining gold nanoparticles and stem cells has been suggested as a new technique for elevating the efficiency of photothermal therapy (PT) in terms of enhancing tumor targeting effect. However, to elicit the efficiency of PT using gold nanoparticles and stem cells, delivering large amounts of AuNPs into stem cells without loss should be considered. METHODS: AuNPs, AuNPs-decorated silica nanoparticles, and silica-capped and AuNPs-decorated silica nanoparticles (SGSs) were synthesized and used to treat human mesenchymal stem cells (hMSCs). After evaluating physical properties of each nanoparticle, the concentration of each nanoparticle was estimated based on its cytotoxicity to hMSCs. The amount of AuNPs loss from each nanoparticle by exogenous physical stress was evaluated after exposing particles to a gentle shaking. After these experiments, in vitro and in vivo photothermal effects were then evaluated. RESULTS: SGS showed no cytotoxicity when it was used to treat hMSCs at concentration up to 20 µg/mL. After intravenous injection to tumor-bearing mice, SGS-laden hMSCs group showed significantly higher heat generation than other groups following laser irradiation. Furthermore, in vivo photothermal effect in the hMSC-SGS group was significantly enhanced than those in other groups in terms of tumor volume decrement and histological outcome. CONCLUSION: Our results suggest that additional silica layer in SGSs could protect AuNPs from physical stress induced AuNPs loss. The strategy applied in SGS may offer a prospective method to improve PT.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Camundongos , Animais , Ouro/farmacologia , Dióxido de Silício , Terapia Fototérmica , Neoplasias/patologia
19.
Stem Cell Res Ther ; 13(1): 215, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619187

RESUMO

BACKGROUND: Human adipose-derived stem cells (hADSCs) have been widely used for regenerative medicine because of their therapeutic efficacy and differentiation capacity. However, there are still limitations to use them intactly due to some difficulties such as poor cell engraftment and viability after cell transplantation. Therefore, techniques such as photobiomodulation (PBM) are required to overcome these limitations. This study probed improved preclinical efficacy of irradiated hADSCs and its underlying molecular mechanism. METHODS: hADSCs were irradiated with green organic light-emitting diodes (OLEDs). Treated cells were analyzed for mechanism identification and tissue regeneration ability verification. Expression levels of genes and proteins associated with photoreceptor, cell proliferation, migration, adhesion, and wound healing were evaluated by performing multiple assays and immunostaining. Excision wound models were employed to test in vivo therapeutic effects. RESULTS: In vitro assessments showed that Opsin3 (OPN3) and OPN4 are both expressed in hADSCs. However, only OPN4 was stimulated by green OLED irradiation. Cell proliferation, migration, adhesion, and growth factor expression in treated hADSCs were enhanced compared to control group. Conditioned medium containing paracrine factors secreted from irradiated hADSCs increased proliferation of human dermal fibroblasts and normal human epidermal keratinocytes. Irradiated hADSCs exerted better wound healing efficacy in vivo than hADSCs without OLED irradiation. CONCLUSIONS: Our study introduces an intracellular mechanism of PBM in hADSCs. Our results revealed that photoreceptor OPN4 known to activate Gq-protein and consequently lead to reactive oxygen species production responded to OLED irradiation with a wavelength peak of 532 nm. In conclusion, green OLED irradiation can promote wound healing capability of hADSCs, suggesting that green OLED has potential preclinical applications.


Assuntos
Adipócitos , Células-Tronco , Tecido Adiposo , Diferenciação Celular/fisiologia , Humanos , Opsinas de Bastonetes/metabolismo , Células-Tronco/metabolismo , Cicatrização/fisiologia
20.
Bioeng Transl Med ; 7(2): e10279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600658

RESUMO

Mesenchymal stem cells such as human adipose tissue-derived stem cells (hADSCs) have been used as a representative therapeutic agent for tissue regeneration because of their high proliferation and paracrine factor-secreting abilities. However, certain points regarding conventional ADSC delivery systems, such as low cell density, secreted cytokine levels, and cell viability, still need to be addressed for treating severe wounds. In this study, we developed a three-dimensional (3D) cavity-structured stem cell-laden system for overdense delivery of cells into severe wound sites. Our system includes a hydrophobic surface and cavities that can enhance the efficiency of cell delivery to the wound site. In particular, the cavities in the system facilitate hADSC spheroid formation, increasing therapeutic growth factor expression compared with 2D cultured cells. Our hADSC spheroid-loaded patch exhibited remarkably improved cell localization at the wound site and dramatic therapeutic efficacy compared to the conventional cell injection method. Taken together, the hADSC spheroid delivery system focused on cell delivery, and stem cell homing effect at the wound site showed a significantly enhanced wound healing effect. By overcoming the limitations of conventional cell delivery methods, our overdense cell delivery system can contribute to biomedical and clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...