Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(9): 3452-3466, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179174

RESUMO

Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems. We found that the dendrimer-like structure of aminated glycogen nanoparticles is key to controlling the multivalent coordination and phase separation of albumin molecules to form stable glycogen-albumin nanocomplexes. The pH-responsive glycogen scaffold conferred the nanocomplexes the ability to undergo partial endosomal escape in tumour, stromal and immune cells while albumin enabled nanocomplexes to cross endothelial cells and carry therapeutic agents. Limited interactions of nanocomplexes with T cells, B cells and natural killer cells derived from human blood were observed. The nanocomplexes can accommodate chemotherapeutic drugs and release them in multicellular 2D and 3D constructs. The drugs loaded on the nanocomplexes retained their cytotoxic activity, which is comparable with the activity of the free drugs. Cancer cells were found to be more sensitive to the drugs in the presence of stromal and immune cells. Penetration and cytotoxicity of the drug-loaded nanocomplexes in tumour mimicking tissues were validated using a 3D multicellular-collagen construct in a perfusion bioreactor. The results highlight a simple and potentially scalable strategy for engineering nanocomplexes made entirely of biological macromolecules with potential use for drug delivery.


Assuntos
Albuminas , Antineoplásicos , Glicogênio , Nanopartículas , Albuminas/química , Antineoplásicos/administração & dosagem , Células Endoteliais , Glicogênio/química , Humanos , Nanopartículas/química
2.
Nanomaterials (Basel) ; 10(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911613

RESUMO

High-frequency ultrasound treatment is found to be a one-pot green technique to produce peptide-based nanostructures by ultrasound assisted self-assembly of oligopeptides. [Arg-Phe]4 octapeptides, consisting of alternating arginine (Arg/R) and phenylalanine (Phe/F) sequences, were subjected to 430 kHz ultrasound in aqueous solution in the absence of any external agents, to form [RF]4 nanoparticles ([RF]4-NPs), ~220 nm in diameter. A comprehensive analysis of the obtained nanoparticles demonstrated that the aromatic moieties of the oligopeptides can undergo oxidative coupling to form multiple oligomeric species, which then self-assemble into well-defined fluorescent nanoparticles. [RF]4-NPs were functionalized with polyethylene glycol (PEGylated) to improve their colloidal stability. Unlike the parent peptide, the PEGylated [RF]4-NPs showed limited cytotoxicity towards MDA-MB-231 cells. Furthermore, the intracellular trafficking of PEGylated [RF]4-NPs was investigated after incubation with MDA-MB-231 cells to demonstrate their efficient endo-lysosomal escape. This work highlights that the combined use of ultrasonic technologies and peptides enables easy fabrication of nanoparticles, with potential application in drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...