Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Appl Radiat Isot ; 176: 109840, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34256272

RESUMO

Residence time distribution (RTD) measurements were carried out in a packed bed column designed for exchange of hydrogen isotopes. The main objective of the study was to characterize the liquid phase mixing under various processes and operating conditions. The packed bed was composed of a mixture of two different types of catalytic packing materials, i.e., a hydrophobic material and a hydrophilic material. Technitium-99m (99mTc) as sodium pertechnetate was used as a radiotracer for RTD measurements. From the measured RTD curves, mean residence times (MRTs), liquid holdup and degree of mixing of liquid phase were evaluated. An axial dispersion model exchange with stagnant zones was used to simulate the measured RTD curves. The results of model simulation showed that volume fraction of hydrophobic to hydrophilic packing and gas/liquid superficial velocities affect the liquid holdup, bed pressure drop and liquid phase dispersion/mixing characteristics. The results of the present study will help to screen packing, optimize the volume of the packing fractions, design and construct the catalyst and optimize the operating conditions for scale up of the isotope exchange process.

2.
Appl Radiat Isot ; 121: 51-60, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28033501

RESUMO

Holdup and axial dispersion of liquid phase in a catalytic exchange column were investigated by measuring residence time distributions (RTD) using a radiotracer technique. RTD experiments were independently carried out with two different types of packings i.e. hydrophobic water-repellent supported platinum catalyst and a mixture (50% (v/v)) of hydrophobic catalyst and a hydrophillic wettable packing were used in the column. Mean residence times and hold-ups of the liquid phase were estimated at different operating conditions. Axial dispersion model (ADM) and axial dispersion with exchange model (ADEM) were used to simulate the measured RTD data. Both the models were found equally suitable to describe the measured data. The degree of axial mixing was estimated in terms of Peclet number (Pe) and Bodenstein number (Bo). Based on the obtained parameters of the ADM, correlations for total liquid hold-up (HT) and axial mixing in terms of Bo were proposed for design and scale up of the full-scale catalytic exchange column.

3.
J Phys Chem B ; 119(34): 11262-74, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26132632

RESUMO

Like-charge ion-pair formation in an aqueous solution of guanidinium chloride (GdmCl) has two important facets. On one hand, it describes the role of the arginine (ARG) side chain in aggregation and dimer formation in proteins, and on the other hand, it lends support for the direct mechanism of protein denaturation by GdmCl. We employ all-atom molecular dynamics simulations to investigate the effect of GdmCl concentration on the like-charge ion-pair formation of guanidinium ions (Gdm(+)). From analyses of the radial distribution function (RDF) between the carbon atoms of two guanidinium moieties, the existence of both contact pairs and solvent-separated pairs has been observed. Although the peak height corresponding to the contact-pair state decreases, the number of Gdm(+) ions in the contact-pair state actually increases with increasing GdmCl concentration. We have also investigated the effect of the concentration of Gdm(+) on the structure of water. The effect of GdmCl concentration on the radial and tetrahedral structures of water is found to be negligibly small; however, GdmCl concentration has a considerable effect on the hydrogen-bonding structure of water. It is demonstrated that the presence of chloride ions, not Gdm(+), in the first solvation shell of water causes the distortion in the hydrogen-bonding network of water. In order to establish that Gdm(+) not only stacks against another Gdm(+) but also directly attacks the ARG residue of a protein or peptide, simulation of an ARG-rich peptide in 6 M aqueous solution of GdmCl has been performed. The analyses of RDFs and orientation distributions reveal that the Gdm(+) moiety of the GdmCl attacks the same moiety in the ARG side chain with a parallel stacking orientation.


Assuntos
Guanidina/química , Simulação de Dinâmica Molecular , Água/química , Íons/química , Soluções/química
4.
Calcutta; National Homoeo Laboratory; 1972. 488 p.
Monografia em Inglês | HomeoIndex - Homeopatia | ID: hom-9839
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...