Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36138809

RESUMO

The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.

2.
Front Plant Sci ; 13: 892676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035679

RESUMO

Heat and Water Deficit Stress (WDS) tend to impede and restrict the efficiency of photosynthesis, chlorophyll fluorescence, and maximum photochemical quantum yield in plants based on their characteristic ability to interfere with the electron transport system in photosystem II. Dissection of the electron transport pathway in Photosystem II (PSII) under water deficit and Heat Stress (HS) can be insightful in gaining knowledge on the various attributes of the photosynthetic performance of a plant. We attempt a high-resolution dissection of electron transport in PSII with studies on chlorophyll a fast fluorescence kinetics and non-photochemical quenching (NPQ) as a response to and recovery from these stresses in pearl millet [Pennisetum glaucum (L.) R. Br.] in isolation and combination. In this study, we bring out the mechanisms by which both heat and water stress, in isolation and in combination, affect the photosynthetic electron transport in Photosystem II. Our results indicate that oxygen evolution complex (OEC) damage is the primary effect of heat stress and is not seen with the same intensity in the water-stressed plants. Low exciton absorption flux in heat stress and combined stress was seen due to OEC damage, and this caused an electron transport traffic jam in the donor side of PS II. Both the specific energy flux model and the phenomenological flux model developed from the derived values in our study show that water deficit stress in combination with heat stress has a much stronger effect than the stresses in isolation on the overall electron transport pathway of the PS II in pearl millet plants.

3.
Interdiscip Sci ; 9(4): 528-539, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26984814

RESUMO

Achaea janata granulovirus (AcjaGV), an insect virus belonging to Baculoviridae, infects semilooper, a widely distributed defoliating pest on castor beans (Ricinus communis L.) and several other plant hosts in India. The propagation and purification of the Hyderabad isolate AcjaGV were performed, granulin gene from this isolate was amplified, cloned and sequenced, and its homology with other known granulin genes was assessed. The 753-bp granulin ORF of AcjaGV encoded for a granulin protein of 250 amino acids with a molecular mass of 29.5 ± 0.7 kDa. This amino acid sequence exhibited significant homology with Spodoptera litura granulovirus (SpliGV) and other GVs infecting insects in the same Noctuidae family of Lepidoptera. Peptide analysis of granulin protein indicated close homology with that of SpliGV. Virtual RFLP patterns from in silico digestions of granulin gene of 18 granuloviruses mapped by 12 restriction enzymes were used for simulated digestions. Implications of the phylogenetic relationships of granulin nucleotide and deduced amino acid sequence are discussed. We have established the sequence identity of granulin gene of AcjaGV and characterized its protein product and the phylogenetic relationship with other known GVs. Our results indicate the presence of unique restriction sites for three restriction enzymes, and this can be used as a tool for identification of AcjaGV from various sources. This is the first report from the Indian subcontinent to describe the complete granulin gene of a GV isolated from A. janata.


Assuntos
Baculoviridae/genética , Granulovirus/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Filogenia , Polimorfismo de Fragmento de Restrição/genética , Progranulinas
4.
Funct Integr Genomics ; 14(1): 11-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24408129

RESUMO

Among the effects of impending climate change, drought will have a profound impact on crop productivity in the future. Response to drought stress has been studied widely, and the model plant Arabidopsis has guided the studies on crop plants with genome sequence information viz., rice, wheat, maize and sorghum. Since the value of functions of genes, dynamics of pathways and interaction of networks for drought tolerance in plants can only be judged by evidence from field performance, this mini-review provides a research update focussing on the current developments on the response to drought in crop plants. Studies in Arabidopsis provide the basis for interpreting the available information in a systems biology perspective. In particular, the elucidation of the mechanism of drought stress response in crops is considered from evidence-based outputs emerging from recent omic studies in crops.


Assuntos
Produtos Agrícolas/fisiologia , Secas , Estresse Fisiológico/genética , Ácido Abscísico/fisiologia , Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Metaboloma , Oryza/genética , Proteoma , Interferência de RNA , Transdução de Sinais , Sorghum/genética , Transcriptoma , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...