Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 441: 138405, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38218142

RESUMO

Flavonoids or phenolic compounds are part of the daily intake of every human being. Though they are positive traders for metabolism, excessive intakes bring about detrimental impacts on human health. Herein, the anti-cancer capacitive nature quercetin (Qc) was electrochemically detected through the rare earth metal-based sphere like praseodymium vanadate (PrVO4) entrapped graphitic carbon nitride (g-CN) as electrode modifiers. The nanocomposite was prepared by the one-pot hydrothermal method and characterized by phase compositional and morphology-based techniques. The existing synergistic nature between the PrV@g-CN (praseodymium vanadate@graphitic carbon nitride) makes them have an enhanced electrochemical response towards the Qc than the individual material. The obtained cyclic voltammogram and differential pulse voltammogram profile show one major oxidation peak which is attributed to the conversion of quercetin to quercetin-o-quinone. The PrV@g-CN/GCE (GCE- glassy carbon electrode) shows a good electrochemical active surface area (A = 110 cm2) and linear range between 0.05 and 252.00 µM with a LOD (limit of detection) of 0.002 µM. Moreover, the PrV@g-CN/GCE exhibits good current retention (94.76 %) around 14 days and appreciable repeatability (RSD- 0.5 %) and reproducibility (RSD- 1.3 %) towards the Qc. The real-time implementation of the proposed sensor exhibits a good recovery range towards the black tea (95.00-98.10 %) and green tea (97.80-99.60 %).


Assuntos
Grafite , Nanocompostos , Compostos de Nitrogênio , Quercetina , Humanos , Flavonoides , Praseodímio , Vanadatos/química , Reprodutibilidade dos Testes , Limite de Detecção , Técnicas Eletroquímicas/métodos , Carbono/química , Eletrodos , Nanocompostos/química
2.
Chemosphere ; 310: 136834, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241108

RESUMO

Diethofencarb (DFC) is a fungicide used in agricultural fields and it's overe use makes a negative impact in the real-time environment. Here in this work, a semi-conductive urchin like Bismuth sulfide (Bi2S3) anchored with tubular structure functionalized halloysite nanotube (F-HNT) was hydrothermally synthesized and used for the electrochemical detection of DFC. Various analytical and microscopic techniques were used to analyze the structure, crystalline nature, and purity of the as-prepared F-HNT@Bi2S3. Moreover, the cyclic voltammetry technique was used to analyze the electrochemical studies of the F-HNT@Bi2S3 modified glassy carbon electrode (GCE). A high synergetic relationship between the Bi2S3 and F-HNT provides a large surface area and better detection of DFC. The amperometry i-t technique result shows that the prepared composite exhibits a wide linear range of 0.0053-526.62 µg L-1, a low detection limit of 0.0032 µg L-1, and very good stability over 2000 s. Notably, our proposed sensor can determine the DFC spiked tomato and water samples with a high recovery range and proven the viability for real-time analysis. Finally, all the above-mentioned study results prove that the F-HNT@Bi2S3 could be used as an electrochemical probe for the detection of DFC.


Assuntos
Técnicas Eletroquímicas , Nanotubos , Argila , Técnicas Eletroquímicas/métodos , Nanotubos/química , Bismuto/química , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...