Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 671: 325-335, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38815369

RESUMO

This present work demonstrated the functional transformation of 3D printed metal substrates into a new family of Surface-enhanced Raman Scattering substrates, a promising approach in developing SERS-based Point-of-care (PoC) analytical platforms. l-Powder Bed Fusion (l-PBF, Additive manufacturing or 3D printing technique) printed metal substrates have rough surfaces, and exhibit high thermal stability and intrinsic chemical inertness, necessitating a suitable surface functionalization approach. This present work demonstrated a unique multi-stage approach to transform l-PBF printed metal structures as recyclable SERS substrates by colloidal carbon templating, chemical vapor deposition, and electroless plating methods sequentially. The surface of the printed metal structures was functionalized using the colloidal carbon soot particles, that were formed by the eucalyptus oil flame deposition method. These carbon particles were shown to interact with the metals present in the printed structures by forming metal carbides and function as an adlayer on the surface. Subsequent deposition of TiO2 onto these templates led to strong grafting of TiO2 and retaining the fractal structure of the soot template onto the metal surface. Electroless deposition of silver nanoparticles resulted in the formation of fractally structured TiO2/Ag nanostructures and these functionalized printed metal structures were shown as excellent SERS substrates in enhancing the vibrational spectral features of Rhodamine B (RhB). The presence of TiO2 photocatalyst on the surface was shown to remove the RhB analyte from the surface under photochemical conditions, which enables the regeneration of SERS activity, and the substrate can be recycled. The migration of metals from the printed metal structures into the fractally ordered TiO2/Ag nanostructures was found to enhance the photocatalytic activity and increase the recyclability of these substrates. This study demonstrates the potential of 3D-printed Inconel metal substrates as next-generation recyclable SERS platforms, offering a substantial advancement over traditional colloidal, thin-film, flexible, and hard SERS substrates.

2.
Langmuir ; 40(18): 9732-9740, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38668749

RESUMO

Metal-organic frameworks (MOFs) are highly regarded as valuable adsorbent materials in materials science, particularly in the field of CO2 capture. While numerous single-metal-based MOFs have demonstrated exceptional CO2 adsorption capabilities, recent advancements have explored the potential of bimetallic MOFs for enhanced performance. In this study, a CuCe-BTC MOF was synthesized through a straightforward hydrothermal method, and its improved properties, such as high surface area, smaller pore size, and larger pore volume, were compared with those of the bare Ce-BTC. The impact of the Cu/Ce ratio (1:4, 1:2, 1:1, and 3:2) was systematically investigated to understand how adding a second metal influences the CO2 adsorption performance of the Ce-BTC MOF. Various characterization techniques, including scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and N2 BET surface area analysis, were employed to assess the physical and chemical properties of the bare Ce-BTC and CuCe-BTC samples. Notably, CuCe-BTC-1:2 exhibited superior surface area (133 m2 g-1), small pore size (3.3 nm), and large pore volume (0.14 cm3 g-1) compared to the monometallic Ce-BTC. Furthermore, CuCe-BTC-1:2 demonstrated a superior CO2 adsorption capacity (0.74 mmol g-1), long-term stability, and good CO2/N2 selectivity. This research provides valuable insights into the design of metal-BTC frameworks and elucidates how introducing a second metal enhances the properties of the monometallic Ce-BTC-MOF, leading to improved CO2 capture performance.

3.
Org Biomol Chem ; 22(16): 3340, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38607296

RESUMO

Correction for 'Recent progress of core-substituted naphthalenediimides: highlights from 2010' by Sheshanath V. Bhosale et al., Org. Biomol. Chem., 2012, 10, 6455-6468, https://doi.org/10.1039/C2OB25798J.

4.
Adv Mater ; 36(19): e2312474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252677

RESUMO

Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Corantes Fluorescentes/química , Animais , Imagem Óptica , Nanopartículas/química , Carbono/química
5.
Small ; : e2311945, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196051

RESUMO

Hybrid ion capacitors (HIC) are receiving a lot of attention due to their potential to achieve high energy and power densities, but they remain insufficient. It is imperative to explore outstanding and environmentally benign electrode materials to achieve high-performing HIC systems. Here, a unique boron carbon nitride (BCN)-based HIC system that comprises a microporous BCN structure and Fe1-x S nanoparticle incorporated BCN nanosheets (BNF) as cathode and anode, respectively is reported. The BNF is prepared through a facile one-pot calcination process using dithiooxamide (DTO), boric acid, and iron source. In situ, crystal growth of Fe1-x S facilitates the formation of BCN structure through the creation of holes/defects in the polymeric structure. The first principle density functional (DFT) theory simulations demonstrate the structural and electronic properties of the hybrid of BCN and Fe1-x S as compelling anode materials for HIC applications. The DFT calculations reveal that both BCN and BNF structures have excellent metallic characters with Li+ storage capacities of 128.4 and 1021.38 mAh g-1  respectively. These findings are confirmed experimentally where the BCN-based HIC system delivers exceptional energy and power densities of 267.5 Wh kg-1 /749.5 W kg-1 toward Li+ storage, which outweighs previous HIC performances and demonstrates favorable performance for Li+ and Na+ storages.

6.
Nanoscale ; 16(11): 5561-5573, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38258585

RESUMO

The prevalence of 3D-printed portable biomedical sensing devices, which are fashioned mainly from plastic and polymer materials, introduces a pressing concern due to their limited reusability and consequential generation of substantial disposable waste. Considering this, herein, we pioneered a ground-breaking advancement, i.e., a 3D-printed metal substrate-based enzyme. Our inventive methodology involved the synthesis of a thermally degraded Fe-based metal-organic framework, DEG 500, followed by its deposition on a 3D-printed metal substrate composed of Ti-Al-V alloy. This novel composite exhibited remarkable peroxidase-like activity in a range of different temperatures and pH, coupled with the ability to detect glucose in real-world samples such as blood and fruit juices. The exceptional enzymatic behaviour was attributed to the diverse iron (Fe) oxidation states and the presence of oxygen vacancies, as evidenced through advanced characterization techniques. Fundamentally, we rigorously explored the mechanistic pathway through controlled studies and theoretical calculations, culminating in a transformative stride toward more sustainable and effective biomedical sensing practices.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Glucose/química , Oxirredução , Peróxido de Hidrogênio/química , Peroxidases/metabolismo , Impressão Tridimensional , Peroxidase/química
7.
Chem Commun (Camb) ; 59(90): 13406-13420, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37850470

RESUMO

Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and in situ monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures. This feature article elaborates the use of soot templating, chemical vapour deposition and electroless plating techniques for grafting plasmonic and semiconductor nanoparticles on the surface of LPBF manufactured metallic substrates. The capability to fabricate different types of intricate metallic lattices using additive manufacturing is demonstrated and technical challenges in their adequate functionalization are elaborated. The developed methodology allows tailoring of the substrate structure, composition, morphology, plasmonic and photocatalytic activities and thus unveils a new class of recyclable SERS substrates.

8.
J Colloid Interface Sci ; 652(Pt B): 1325-1337, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659304

RESUMO

Mesoporous carbon spheres (MCSs) show great potential for using as high-performance anodes in potassium-ion batteries (PIBs). Design and synthesis of MCSs with suitable multiscale structures and heteroatom doping or co-doping in MCSs are successfully employed to optimize the ion and electron transportation, however, it is still a challenge to explore MCS-based anodes with satisfactory potassium storage performance. In this work, we report novel S-doped MCS samples with abundant internal surfaces for potassium storage. The S doping sites are controlled during the synthesis, and the effect of different doping sites on the potassium storage is systematically studied. It is found that S doping between the carbon layers enlarges interlayer spacing and facilitates potassium ion adsorption. Consequently, the optimized sample shows an excellent rate capability of 144 mAh/g at 5.0 A/g, and a high reversible specific capacity of 325 mAh/g after 100 cycles at 0.1 A/g with a capacity retention of 91.2%. The important role of element doping sites on ion adsorption and ion storage performance is confirmed by theoretical investigations. Controlling the doping sites in MCSs provides a new approach to designing high-performance electrodes for energy storage and conversion applications.

9.
Environ Res ; 236(Pt 1): 116578, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454803

RESUMO

Biochar-based slurry is a fossil-free-liquid fuel derived from a renewable source, biomass. This study aims to examine the properties of this fuel as an alternative to coal-water slurries. The slurries were produced by suspending 40 wt% biochar in a solution made of water and a surfactant. Two biochar types from chemically treated and untreated rice straw (RS) were utilized to assess the impact of particle-particle interactions and biochar physicochemical composition on slurry properties, including stability, rheology, and heating value. Additionally, three particle size distributions (PSD), two unimodal and a bimodal, were used to analyze the effect of PSD on the abovementioned properties. All slurries had an average energy content of 7.32 ± 0.27 MJ/kg. The stability of the slurry was higher for fine particles from treated RS with unimodal PSD (Dv50 8.8 ± 0.68 µm). However, slurries containing fine and coarse particles with bimodal PSD (Dv50 15.8 ± 0.64 µm) had relatively lower apparent viscosities of 342.1 and 336.55 mPa.s at a shear rate of 100 s-1 for slurries made of biochar from treated and untreated RS, respectively. Slurries containing coarse particles from treated and untreated RS with unimodal PSD (Dv50 18.6 ± 0.32 µm) led to higher viscosities and particle settling rates. Biochar morphology and chemical surface constitution significantly influenced slurry stability, while PSD greatly impacted rheological results.

10.
Adv Healthc Mater ; 12(25): e2300768, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37392379

RESUMO

Nanomaterials that mimic the catalytic activity of natural enzymes in the complex biological environment of the human body are called nanozymes. Recently, nanozyme systems have been reported with diagnostic, imaging, and/or therapeutic capabilities. Smart nanozymes strategically exploit the tumor microenvironment (TME) by the in situ generation of reactive species or by the modulation of the TME itself to result in effective cancer therapy. This topical review focuses on such smart nanozymes for cancer diagnosis, and therapy modalities with enhanced therapeutic effects. The dominant factors that guide the rational design and synthesis of nanozymes for cancer therapy include an understanding of the dynamic TME, structure-activity relationships, surface chemistry for imparting selectivity, and site-specific therapy, and stimulus-responsive modulation of nanozyme activity. This article presents a comprehensive analysis of the subject including the diverse catalytic mechanisms of different types of nanozyme systems, an overview of the TME, cancer diagnosis, and synergistic cancer therapies. The strategic application of nanozymes in cancer treatment can well be a game changer in future oncology. Moreover, recent developments may pave the way for the deployment of nanozyme therapy into other complex healthcare challenges, such as genetic diseases, immune disorders, and ageing.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanoestruturas/uso terapêutico , Relação Estrutura-Atividade , Catálise , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
11.
Inorg Chem ; 62(23): 8846-8862, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37254744

RESUMO

Treatment of the bis(chelate) complexes trans-[M(κ2-2-C6F4PPh2)2] (trans-1M; M = Ni, Pt) and cis-[Pt(κ2-2-C6F4PPh2)2] (cis-1Pt) with equimolar amounts or excess of PMe3 solution gave complexes of the type [(Me3P)xM(2-C6F4PPh2)2] (x = 2: 2Ma, 2Mb x = 1: 3Ma, 3Mb; M = Ni, Pt). The reactivity of complexes of the type 2M and 3M toward monovalent coinage metal ions (M' = Cu, Ag, Au) was investigated next to the reaction of 1M toward [AuCl(PMe3)]. Four different complex types [(Me3P)2M(µ-2-C6F4PPh2)2M'Cl] (5MM'; M = Ni, Pt; M' = Cu, Ag, Au), [(Me3P)M(κ2-2-C6F4PPh2)(µ-2-C6F4PPh2)M'Cl]x (x = 1: 6MM'; M = Pt; M' = Cu, Au; x = 2: 6PtAg), head-to-tail-[(Me3P)ClM(µ-2-C6F4PPh2)2M'] (7MM'; M = Ni, Pt; M' = Au), and head-to-head-[(Me3P)ClM(µ-2-C6F4PPh2)2M'] (8MM'; M = Ni, Pt; M' = Cu, Ag, Au) were observed. Single-crystal X-ray analyses of complexes 5-8 revealed short metal-metal separations (2.7124(3)-3.3287(7) Å), suggestive of attractive metal-metal interactions. Quantum chemical calculations (atoms in molecules (AIM), electron localization function (ELF), non-covalent interaction (NCI), and natural bond orbital (NBO)) gave theoretical support that the interaction characteristics reach from a pure attractive non-covalent to an electron-shared (covalent) character.

12.
Mater Horiz ; 10(5): 1479-1538, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040188

RESUMO

Li7La3Zr2O12 (LLZO)-based solid-state Li batteries (SSLBs) have emerged as one of the most promising energy storage systems due to the potential advantages of solid-state electrolytes (SSEs), such as ionic conductivity, mechanical strength, chemical stability and electrochemical stability. However, there remain several scientific and technical obstacles that need to be tackled before they can be commercialised. The main issues include the degradation and deterioration of SSEs and electrode materials, ambiguity in the Li+ migration routes in SSEs, and interface compatibility between SSEs and electrodes during the charging and discharging processes. Using conventional ex situ characterization techniques to unravel the reasons that lead to these adverse results often requires disassembly of the battery after operation. The sample may be contaminated during the disassembly process, resulting in changes in the material properties within the battery. In contrast, in situ/operando characterization techniques can capture dynamic information during cycling, enabling real-time monitoring of batteries. Therefore, in this review, we briefly illustrate the key challenges currently faced by LLZO-based SSLBs, review recent efforts to study LLZO-based SSLBs using various in situ/operando microscopy and spectroscopy techniques, and elaborate on the capabilities and limitations of these in situ/operando techniques. This review paper not only presents the current challenges but also outlines future developmental prospects for the practical implementation of LLZO-based SSLBs. By identifying and addressing the remaining challenges, this review aims to enhance the comprehensive understanding of LLZO-based SSLBs. Additionally, in situ/operando characterization techniques are highlighted as a promising avenue for future research. The findings presented here can serve as a reference for battery research and provide valuable insights for the development of different types of solid-state batteries.

13.
Vaccines (Basel) ; 11(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36992242

RESUMO

Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA, particularly for COVID-19 vaccine delivery. LNPs comprise four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids attached to polyethylene glycol (PEG). In this review, we present recent the advances and insights for the design of LNPs, as well as their composition and properties, with a subsequent discussion on the development of COVID-19 vaccines. In particular, as ionizable lipids are the most critical drivers for complexing the mRNA and in vivo delivery, the role of ionizable lipids in mRNA vaccines is discussed in detail. Furthermore, the use of LNPs as effective delivery vehicles for vaccination, genome editing, and protein replacement therapy is explained. Finally, expert opinion on LNPs for mRNA vaccines is discussed, which may address future challenges in developing mRNA vaccines using highly efficient LNPs based on a novel set of ionizable lipids. Developing highly efficient mRNA delivery systems for vaccines with improved safety against some severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains difficult.

14.
J Colloid Interface Sci ; 634: 63-73, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528972

RESUMO

Graphite is a widely used anode material in commercial lithium-ion batteries (LIBs), but its low theoretical specific capacity and extremely low redox potential limit its application in high-performance lithium-ion batteries. However, developing lithium-ion battery anode with high specific capacity and suitable working potential is still challenging. At present, conductive polymers with excellent properties and graphite-like structures are widely used in the field of electrochemistry, but their Li+ storage mechanism and kinetics are still unclear and need to be further investigated. Therefore, we synthesized the conducting polymer Fe3(2, 3, 6, 7, 10, 11-hexahydroxytriphenylene)2 (Fe-CAT) by the liquid phase method, in which the d-π conjugated structure and pores facilitate electron transfer and electrolyte infiltration, improving the comprehensive electrochemical performance. The Fe-CAT electrode displays a high capacity of 950 mA h g-1 at 200 mA g-1. At the current density of 5.0 A g-1, the electrode shows a reversible capacity of 322 mA h g-1 after 1000 cycles. The average lithiation voltage plateau is âˆ¼ 0.79 V. The combination of ex-situ characterization techniques and electrochemical kinetic analysis reveals the source of the excellent electrochemical performance of Fe-CAT. During the charging/discharging process, the aromatic ring in the organic ligand is involved in the redox reaction. Such results will provide new insights for the design of next-generation high-performance electrode materials for LIBs.

15.
Sci Total Environ ; 854: 158771, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108853

RESUMO

Nanozymes are defined as nanomaterials exhibiting enzyme-like properties, and they possess both catalytic functions and nanomaterial's unique physicochemical characteristics. Due to the excellent stability and improved catalytic activity in comparison to natural enzymes, nanozymes have established a wide base for applications in environmental pollutants monitoring and remediation. Nanozymes have been applied in the detection of heavy metal ions, molecules, and organic compounds, both quantitatively and qualitatively. Additionally, within the natural environment, nanozymes can be employed for the degradation of organic and persistent pollutants such as antibiotics, phenols, and textile dyes. Further, the potential sphere of applications for nanozymes traverses from indoor air purification to anti-biofouling agents, and even they show promise in combatting pathogenic bacteria. However, nanozymes may have inherent toxicity, which can restrict their widespread utility. Thus, it is important to evaluate and monitor the interaction and transformation of nanozymes towards biosphere damage when employed within the natural environment in a cradle-to-grave manner, to assure their utmost safety. In this context, various studies have concluded that the green synthesis of nanozymes can efficiently overcome the toxicity limitations in real life applications, and nanozymes can be well utilized in the sensing and degradation of several toxic pollutants including metal ions, pesticides, and chemical warfare agents. In this seminal review, we have explored the great potential of nanozymes, whilst addressing a range of concerns, which have often been overlooked and currently restrict widespread applications and commercialization of nanozymes.


Assuntos
Poluentes Ambientais , Nanoestruturas , Nanoestruturas/química , Metais/química , Catálise , Íons
16.
Drug Dev Ind Pharm ; 48(8): 384-396, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36047536

RESUMO

OBJECTIVE: The main objective is to formulate solid lipid nanoparticles conjugated with cyclic RGDfk peptide encapsulated with gemcitabine hydrochloride drug for targeting breast cancer. SIGNIFICANCE: The hydrophilic nature of gemcitabine hampers passive transport by cell membrane permeation that may lead to drug resistance as it has to enter the cells via nucleoside transporters. The art of encapsulating the drug in a nanovesicle and then anchoring it with a targeting ligand is one of the present areas of research in cancer chemotherapy. METHODS: In this study, solid lipid nanoparticles were prepared by double emulsification and solvent evaporation method. Cyclic RGDfk and gemcitabine hydrochloride were used as targeting ligands and chemotherapeutic drugs, respectively, for targeting breast cancer. The prepared nanoparticles were evaluated for in vitro and in vivo performance to showcase the targeting efficiency and therapeutic benefits of the gemcitabine-loaded ligand conjugated nanoparticles. RESULTS: When compared with gemcitabine (GEM) and GEM loaded nanoparticles (GSLN), the ligand conjugated GEM nanoparticles (cGSLN) showed superior cytotoxicity, apoptosis, and inhibition of 3D multicellular spheroids in human breast cancer cells (MDA MB 231). The in vivo tumor regression studies in orthotopic breast cancer induced Balb/C mice showed that cGSLN displayed superior tumor suppression and also the targeting potential of the cGSLN toward induced breast cancer. CONCLUSION: Prepared nanoformulations showed enhanced anticancer activity in both 2D and 3D cell culture models along with antitumor efficacy in orthotopic breast cancer mouse models.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Camundongos , Animais , Feminino , Integrina beta3/uso terapêutico , Integrina alfaV , Ligantes , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Gencitabina
17.
Nanoscale ; 14(28): 9989-9996, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35793170

RESUMO

Generation and fine-tuning of surface plasmon resonances is a prerequstite for several established and emerging applications such as photovoltaics, photocatalysis, photothermal therapy, surface-enhanced spectroscopy, sensing, superlensing and lasing. We present a low-cost and scalable lateral electrodeposition method for fabrication of high aspect ratio gold nanoring arrays that exhibit multiple surface plasmon resonances in the visible to near-infrared region. Nickel disc arrays of 2 µm size were initially fabricated using maskless lithography and e-beam evaporation. Selective electrodeposition of gold on the lateral surfaces of nickel disc arrays was achieved using a 50 nm SiO2 film as an insulating mask. Growing from miniscule 100 nm wide lateral surfaces of nickel discs, nanorings with height up to 1084 nm could be obtained with their thickness and aspect ratio governed by the duration of electrodeposition. Facile tuning of the number of plasmon resonances, their resonant wavelength and relative intensity is demonstrated with applications in plasmon mediated photocatalysis and surface-enhanced Raman scattering.

18.
ACS Omega ; 7(16): 14102-14112, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559187

RESUMO

Deep eutectic solvents (DESs) are efficient media for CO2 capture, and an electroreduction process using the deterministic surface of single-atom electrocatalysts is a facile way to screen gas absorption capacities of novel DESs. Using newly prepared transition-metal-based DESs indexed as TDESs, the interfacial mechanism, detection, quantification, and coordination modes of CO2 were determined for the first time. The CO2 has a minimum detection time of 300 s, whereas 500 s of continous ambient CO2 saturation provided ZnCl2/ethanolamine (EA) (1:4) and CoCl2/EA (1:4) TDESs with a maximum CO2 absorption capacity of 0.2259 and 0.1440 mmol/L, respectively. The results indicated that CO2 coordination modes of η1 (C) and η2 (O, O) with Zn in ZnCl2/EA (1:4) TDESs are conceivable. We found that the transition metals in TDESs form an interface at the compact layer of the electrocatalyst, while CO2 •-/CO2 reside in the diffuse layer. These findings are important because they provide reliable inferences about interfacial phenomena for facile screening of CO2 capture capacity of DESs or other green solvents.

19.
Appl Biochem Biotechnol ; 194(8): 3400-3418, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357661

RESUMO

The present study focuses on synthesis of novel high-performance acrylic acid (AA) grafted polyethersulfone (PES) ultrafiltration (UF) membranes for purification of small therapeutic biomolecules such as urea, insulin, and cobalamin. The membranes were indigenously synthesized by adding polyethylene glycol (PEG) of 6 kDa M.Wt. as a pore former and subsequent grafting of AA using 2 to 6 wt.% concentrations under UV-induced photo grafting. Scanning electron microscopy reveals that the PEG additive profoundly influences the pore density on the membrane surface. FTIR spectra confirm the graft polymerization of AA with the PES substrate. Separation performance of the grafted membranes was evaluated to establish the trade-off between the degree of grafting and MWCO. From the experimental results, the pure water flux (PWF) of 6% grafted PES membrane was enhanced from 8.5 (PES [0] [6]) to 18.20 l m-2 h-1 (PES [6 +] [6]) in the presence of PEG pore former, respectively. The grafting concentration window of 2-6% resulted in selective membranes to altogether remove uremic toxins into the permeate with retention of high molecular size proteins. Hence, 5 and 6 wt.% AA grafted membranes exhibited > 90% rejection for insulin and cobalamin biomolecules along with 24.5 and 23.8 l m-2 h-1 bar-1 permeability towards urea, respectively. The process results correlate well with the MWCO values of membranes ranging from 1 to 10 kDa. This work provides the efficacy of these grafted membranes for potential application in the downstream processing of therapeutic biomolecules such as insulin and cobalamin.


Assuntos
Insulinas , Ultrafiltração , Acrilatos , Membranas Artificiais , Polietilenoglicóis , Polímeros , Sulfonas , Ultrafiltração/métodos , Ureia , Vitamina B 12
20.
Bioresour Technol ; 352: 127087, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35358675

RESUMO

A hybrid machine learning (ML) aided experimental approach was proposed in this study to evaluate the growth kinetics of Candida antarctica for lipase production. Different ML models were trained and optimized to predict the growth curves at various substrate concentrations. Results on comparison demonstrate the superior performance of the Gradient boosting regression (GBR) model in growth curves prediction. GBR-based growth kinetics was found to be matching well with the results of the conventional experimental approach while significantly reducing the experimental effort, time, and resources by âˆ¼ 50%. Further, the activity and enzyme kinetics of lipase produced in this study was investigated on hydrolysis of p-nitrophenyl butyrate resulting in a maximum lipase activity of 24.07 U at 44 h. The robustness and significance of developed kinetic models were ensured through detailed statistical analysis. The application of the proposed hybrid approach can be extended to any other microbial process.


Assuntos
Candida , Lipase , Basidiomycota , Candida/metabolismo , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas , Cinética , Lipase/metabolismo , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...