Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Basic Res Cardiol ; 119(2): 261-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436707

RESUMO

Myocardial infarction (MI) induces the generation of proinflammatory Ly6Chigh monocytes in the spleen and the recruitment of these cells to the myocardium. CD4+ Foxp3+ CD25+ T-cells (Tregs) promote the healing process after myocardial infarction by engendering a pro-healing differentiation state in myocardial monocyte-derived macrophages. We aimed to study the effects of CD4+ T-cells on splenic myelopoiesis and monocyte differentiation. We instigated MI in mice and found that MI-induced splenic myelopoiesis is abrogated in CD4+ T-cell deficient animals. Conventional CD4+ T-cells promoted myelopoiesis in vitro by cell-cell-contact and paracrine mechanisms, including interferon-gamma (IFN-γ) signalling. Depletion of regulatory T-cells enhanced myelopoiesis in vivo, as evidenced by increases in progenitor cell numbers and proliferative activity in the spleen 5 days after MI. The frequency of CD4+ T-cells-producing factors that promote myelopoiesis increased within the spleen of Treg-depleted mice. Moreover, depletion of Tregs caused a proinflammatory bias in splenic Ly6Chigh monocytes, which showed predominantly upregulated expression of IFN-γ responsive genes after MI. Our results indicate that conventional CD4+ T-cells promote and Tregs attenuate splenic myelopoiesis and proinflammatory differentiation of monocytes.


Assuntos
Monócitos , Infarto do Miocárdio , Camundongos , Animais , Monócitos/metabolismo , Mielopoese , Baço/metabolismo , Infarto do Miocárdio/metabolismo , Linfócitos T Reguladores/metabolismo , Interferon gama/farmacologia , Camundongos Endogâmicos C57BL
2.
NAR Genom Bioinform ; 4(3): lqac074, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36186922

RESUMO

Transcriptional-translational coupling is accepted to be a fundamental mechanism of gene expression in prokaryotes and therefore has been analyzed in detail. However, the underlying genomic architecture of the expression machinery has not been well investigated so far. In this study, we established a bioinformatics pipeline to systematically investigated >1800 bacterial genomes for the abundance of transcriptional and translational associated genes clustered in distinct gene cassettes. We identified three highly frequent cassettes containing transcriptional and translational genes, i.e. rplk-nusG (gene cassette 1; in 553 genomes), rpoA-rplQ-rpsD-rpsK-rpsM (gene cassette 2; in 656 genomes) and nusA-infB (gene cassette 3; in 877 genomes). Interestingly, each of the three cassettes harbors a gene (nusG, rpsD and nusA) encoding a protein which links transcription and translation in bacteria. The analyses suggest an enrichment of these cassettes in pathogenic bacterial phyla with >70% for cassette 3 (i.e. Neisseria, Salmonella and Escherichia) and >50% for cassette 1 (i.e. Treponema, Prevotella, Leptospira and Fusobacterium) and cassette 2 (i.e. Helicobacter, Campylobacter, Treponema and Prevotella). These insights form the basis to analyze the transcriptional regulatory mechanisms orchestrating transcriptional-translational coupling and might open novel avenues for future biotechnological approaches.

3.
Blood Adv ; 6(10): 3155-3161, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35134123

RESUMO

G6b-B is a megakaryocyte lineage-specific immunoreceptor tyrosine-based inhibition motif-containing receptor, essential for platelet homeostasis. Mice with a genomic deletion of the entire Mpig6b locus develop severe macrothrombocytopenia and myelofibrosis, which is reflected in humans with null mutations in MPIG6B. The current model proposes that megakaryocytes lacking G6b-B develop normally, whereas proplatelet release is hampered, but the underlying molecular mechanism remains unclear. We report on a spontaneous recessive single nucleotide mutation in C57BL/6 mice, localized within the intronic region of the Mpig6b locus that abolishes G6b-B expression and reproduces macrothrombocytopenia, myelofibrosis, and osteosclerosis. As the mutation is based on a single-nucleotide exchange, Mpig6bmut mice represent an ideal model to study the role of G6b-B. Megakaryocytes from these mice were smaller, displayed a less-developed demarcation membrane system, and had a reduced expression of receptors. RNA sequencing revealed a striking global reduction in the level of megakaryocyte-specific transcripts, in conjunction with decreased protein levels of the transcription factor GATA-1 and impaired thrombopoietin signaling. The reduced number of mature MKs in the bone marrow was corroborated on a newly developed Mpig6b-null mouse strain. Our findings highlight an unexpected essential role of G6b-B in the early differentiation within the megakaryocytic lineage.


Assuntos
Mielofibrose Primária , Trombocitopenia , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos/metabolismo , Mielofibrose Primária/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo
4.
Nutrients ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835938

RESUMO

Home confinement during the COVID-19 pandemic is accompanied by dramatic changes in lifestyle and dietary behaviors that can significantly influence health. We conducted an online cross-sectional survey to assess COVID-19 pandemic-induced dietary and lifestyle changes and their association with perceived health status and self-reported body weight changes among 1000 Indian adults in early 2021. Positive improvements in dietary habits, e.g., eating more nutritious (85% of participants) and home-cooked food (89%) and an increase in overall nutrition intake (79%), were observed. Sixty-five percent of participants self-reported increased oat consumption to support immunity. There were some negative changes, e.g., more binge eating (69%), eating more in between meals (67%), and increasing meal portion size (72%). Two-thirds of participants reported no change in lifestyles, whereas 21 and 23% reported an increase, and 13 and 10% reported a decrease in physical activity and sleep, respectively. Overall, 64 and 65% of participants reported an improvement in perceived health and an increase in body weight during the COVID-19 period compared to pre-COVID-19, respectively. The top motivations for improving dietary habits included improving physical and mental health and building immunity. In conclusion, the overall perceived health was improved and there was an increase in self-reported body weight in most participants during COVID-19. Diet emerged as the most crucial determinant for these changes.


Assuntos
COVID-19 , Dieta Saudável , Exercício Físico , Comportamento Alimentar , Quarentena , Sono , Adolescente , Adulto , Estudos Transversais , Inquéritos sobre Dietas , Feminino , Preferências Alimentares , Humanos , Sistema Imunitário/fisiologia , Índia , Masculino , Saúde Mental , Pessoa de Meia-Idade , Estado Nutricional , Valor Nutritivo , Estudos Prospectivos , Fatores de Tempo , Adulto Jovem
5.
Bioorg Chem ; 112: 104860, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839462

RESUMO

Benzosuberene-sulfone (BSS) analogues have been semi-synthesized following green approaches from himachalenes, which has been extracted from essential oil of Cedrus deodara. In this process, benzosuberene in presence of different aryl or alkyl sodium sulfinates, I2 and potassium persulfate (K2S2O8) in acetonitrile-water solvent conditions gave BSS-analogues at room temperature. Under this reaction, a facile endocyclic ß-H elimination has been noticed for BSS-analogues synthesis instead of vinyl sulfones and the reason may be due to its specific structure and electronic environment. The BSS-compounds were obtained with moderate to excellent yields under mild conditions. All the compounds were computationally subjected to drug likeliness and toxicity prediction studies. Further, the synthesized molecules were evaluated under in-silico studies for their binding affinity towards the native Peroxisome Proliferator-Activated Receptor Gamma (PPARG), and two PPARG mutants (R357A and V290M). Both the mutant forms of PPARG are deficient in eliciting a response to treatment with full and partial agonists. Our computational studies suggested that the molecule 3q performed better than the standard drug (Rosiglitazone) in all three protein structures. This implies that our suggested molecule could act as a more potent antagonist to native PPARG and could also be developed to treat type-2 diabetes patients with R357A and V290M mutations, which didn't elicit any response to currently available drugs in the market.


Assuntos
Cedrus/química , Cumarínicos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Sulfonas/farmacologia , Cumarínicos/química , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonas/química
6.
Brief Bioinform ; 22(1): 178-193, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31848574

RESUMO

Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental microorganisms. However, the analysis of the microbiome is affected by experimental conditions (e.g. sequencing errors and genomic repeats) and computationally intensive and cumbersome downstream analysis (e.g. quality control, assembly, binning and statistical analyses). Moreover, the introduction of new sequencing technologies and protocols led to a flood of new methodologies, which also have an immediate effect on the results of the analyses. The aim of this work is to review the most important workflows for 16S rRNA sequencing and shotgun and long-read metagenomics, as well as to provide best-practice protocols on experimental design, sample processing, sequencing, assembly, binning, annotation and visualization. To simplify and standardize the computational analysis, we provide a set of best-practice workflows for 16S rRNA and metagenomic sequencing data (available at https://github.com/grimmlab/MicrobiomeBestPracticeReview).


Assuntos
Metagenômica/métodos , Microbiota/genética , Guias de Prática Clínica como Assunto , Animais , Código de Barras de DNA Taxonômico/métodos , Código de Barras de DNA Taxonômico/normas , Humanos , Metagenômica/normas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
7.
Plant Methods ; 16(1): 157, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353559

RESUMO

BACKGROUND: Assessment of seed germination is an essential task for seed researchers to measure the quality and performance of seeds. Usually, seed assessments are done manually, which is a cumbersome, time consuming and error-prone process. Classical image analyses methods are not well suited for large-scale germination experiments, because they often rely on manual adjustments of color-based thresholds. We here propose a machine learning approach using modern artificial neural networks with region proposals for accurate seed germination detection and high-throughput seed germination experiments. RESULTS: We generated labeled imaging data of the germination process of more than 2400 seeds for three different crops, Zea mays (maize), Secale cereale (rye) and Pennisetum glaucum (pearl millet), with a total of more than 23,000 images. Different state-of-the-art convolutional neural network (CNN) architectures with region proposals have been trained using transfer learning to automatically identify seeds within petri dishes and to predict whether the seeds germinated or not. Our proposed models achieved a high mean average precision (mAP) on a hold-out test data set of approximately 97.9%, 94.2% and 94.3% for Zea mays, Secale cereale and Pennisetum glaucum respectively. Further, various single-value germination indices, such as Mean Germination Time and Germination Uncertainty, can be computed more accurately with the predictions of our proposed model compared to manual countings. CONCLUSION: Our proposed machine learning-based method can help to speed up the assessment of seed germination experiments for different seed cultivars. It has lower error rates and a higher performance compared to conventional and manual methods, leading to more accurate germination indices and quality assessments of seeds.

8.
Cell Mol Gastroenterol Hepatol ; 10(2): 365-389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289499

RESUMO

BACKGROUND & AIMS: Loss-of-function variants in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) impair the recognition of the bacterial cell wall component muramyl-dipeptide and are associated with an increased risk for developing Crohn's disease. Likewise, exposure to antibiotics increases the individual risk for developing inflammatory bowel disease. Here, we studied the long-term impact of NOD2 on the ability of the gut bacterial and fungal microbiota to recover after antibiotic treatment. METHODS: Two cohorts of 20-week-old and 52-week-old wild-type (WT) C57BL/6J and NOD2 knockout (Nod2-KO) mice were treated with broad-spectrum antibiotics and fecal samples were collected to investigate temporal dynamics of the intestinal microbiota (bacteria and fungi) using 16S ribosomal RNA and internal transcribed spacer 1 sequencing. In addition, 2 sets of germ-free WT mice were colonized with either WT or Nod2-KO after antibiotic donor microbiota and the severity of intestinal inflammation was monitored in the colonized mice. RESULTS: Antibiotic exposure caused long-term shifts in the bacterial and fungal community composition. Genetic ablation of NOD2 was associated with delayed body weight gain after antibiotic treatment and an impaired recovery of the bacterial gut microbiota. Transfer of the postantibiotic fecal microbiota of Nod2-KO mice induced an intestinal inflammatory response in the colons of germ-free recipient mice compared with respective microbiota from WT controls based on histopathology and gene expression analyses. CONCLUSIONS: Our data show that the bacterial sensor NOD2 contributes to intestinal microbial community composition after antibiotic treatment and may add to the explanation of how defects in the NOD2 signaling pathway are involved in the etiology of Crohn's disease.


Assuntos
Antibacterianos/efeitos adversos , Doença de Crohn/genética , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/imunologia , Proteína Adaptadora de Sinalização NOD2/deficiência , Animais , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , DNA Bacteriano/isolamento & purificação , DNA Fúngico/isolamento & purificação , Modelos Animais de Doenças , Disbiose/genética , Disbiose/imunologia , Disbiose/microbiologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/genética , RNA Ribossômico 16S/genética , Transdução de Sinais/imunologia
9.
Exp Cell Res ; 392(2): 112026, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32333908

RESUMO

Mineralization disorders with a broad range of etiological factors represent a huge challenge in dental diagnosis and therapy. Hypophosphatasia (HPP) belongs to the rare diseases affecting predominantly mineralized tissues, bones and teeth, and occurs due to mutations in the ALPL gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). Here we analyzed stem cells from bone marrow (BMSCs), dental pulp (DPSCs) and periodontal ligament (PDLSCs) in the absence and presence of efficient TNAP inhibitors. The differentiation capacity, expression of surface markers, and gene expression patterns of donor-matched dental cells were compared during this in vitro study. Differentiation assays showed efficient osteogenic but low adipogenic differentiation (aD) capacity of PDLSCs and DPSCs. TNAP inhibitor treatment completely abolished the mineralization process during osteogenic differentiation (oD). RNA-seq analysis in PDLSCs, comparing oD with and without TNAP inhibitor levamisole, showed clustered regulation of candidate molecular mechanisms that putatively impaired osteogenesis and mineralization, disequilibrated ECM production and turnover, and propagated inflammation. Combined alteration of cementum formation, mineralization, and elastic attachment of teeth to cementum via elastic fibers may explain dental key problems in HPP. Using this in vitro model of TNAP deficiency in DPSCs and PDLSCs, we provide novel putative target areas for research on molecular cues for specific dental problems in HPP.


Assuntos
Biomarcadores/metabolismo , Polpa Dentária/patologia , Hipofosfatasia/complicações , Células-Tronco Mesenquimais/patologia , Ligamento Periodontal/patologia , Doenças Estomatognáticas/patologia , Adolescente , Adulto , Antirreumáticos/farmacologia , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Levamisol/farmacologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , RNA-Seq , Doenças Estomatognáticas/etiologia , Doenças Estomatognáticas/metabolismo , Transcriptoma/efeitos dos fármacos , Adulto Jovem
10.
Nat Commun ; 10(1): 4877, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653831

RESUMO

The interaction between the mammalian host and its resident gut microbiota is known to license adaptive immune responses. Nutritional constituents strongly influence composition and functional properties of the intestinal microbial communities. Here, we report that omission of a single essential amino acid - tryptophan - from the diet abrogates CNS autoimmunity in a mouse model of multiple sclerosis. Dietary tryptophan restriction results in impaired encephalitogenic T cell responses and is accompanied by a mild intestinal inflammatory response and a profound phenotypic shift of gut microbiota. Protective effects of dietary tryptophan restriction are abrogated in germ-free mice, but are independent of canonical host sensors of intracellular tryptophan metabolites. We conclude that dietary tryptophan restriction alters metabolic properties of gut microbiota, which in turn have an impact on encephalitogenic T cell responses. This link between gut microbiota, dietary tryptophan and adaptive immunity may help to develop therapeutic strategies for protection from autoimmune neuroinflammation.


Assuntos
Autoimunidade/imunologia , Dieta , Encefalomielite Autoimune Experimental/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T/imunologia , Triptofano , Animais , Proteínas Alimentares , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/microbiologia , Microbioma Gastrointestinal/genética , Camundongos , Esclerose Múltipla , RNA Ribossômico 16S/genética
11.
Gastroenterology ; 157(5): 1279-1292.e11, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31326413

RESUMO

BACKGROUND & AIMS: Altered interactions between the mucosal immune system and intestinal microbiota contribute to pathogenesis of inflammatory bowel diseases (IBD). It is not clear how inhibitors of cytokines, such as antagonists of tumor necrosis factor (anti-TNF), affect the intestinal microbiome. We investigated the effects of anti-TNF agents on gut microbe community structure and function in a longitudinal 2-step study of patients with IBD. We correlated our findings with outcomes of treatment and investigated patterns of metabolites in fecal samples before and after anti-TNF therapy. METHODS: We performed a prospective study of 2 cohorts of patients in Germany; the discovery cohort comprised 12 patients with IBD, 17 patients with rheumatic disease, and 19 healthy individuals (controls); fecal samples were collected at baseline and 2, 6, and 30 weeks after induction of anti-TNF therapy. The validation cohort comprised 23 patients with IBD treated with anti-TNF or vedolizumab (anti-α4ß7 integrin) and 99 healthy controls; fecal samples were collected at baseline and at weeks 2, 6, and 14. Fecal microbiota were analyzed by V3-V4 16S ribosomal RNA gene amplicon sequencing. Clinical response and remission were determined by clinical disease activity scores. Metabolic network reconstruction and associated fecal metabolite level inference was performed in silico using the AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) resource. Metabolomic analyses of fecal samples from a subset of patients were performed to validate metabolites associated with treatment outcomes. RESULTS: Anti-TNF therapy shifted the diversity of fecal microbiota in patients with IBD, but not with rheumatic disease, toward that of controls. Across timepoints, diversity indices did not vary significantly between patients with IBD who did or did not achieve clinical remission after therapy. In contrast, in silico modeling of metabolic interactions between gut microbes found metabolite exchange to be significantly reduced at baseline in fecal samples from patients with IBD and to be associated with later clinical remission. Predicted levels of butyrate and substrates involved in butyrate synthesis (ethanol or acetaldehyde) were significantly associated with clinical remission following anti-TNF therapy, verified by fecal metabolomic analyses. CONCLUSIONS: Metabolic network reconstruction and assessment of metabolic profiles of fecal samples might be used to identify patients with IBD likely to achieve clinical remission following anti-TNF therapy and increase our understanding of the heterogeneity of IBD.


Assuntos
Antirreumáticos/uso terapêutico , Bactérias/metabolismo , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos/efeitos dos fármacos , Doenças Reumáticas/tratamento farmacológico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Antirreumáticos/efeitos adversos , Bactérias/genética , Estudos de Casos e Controles , Fezes/microbiologia , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Metabolômica , Seleção de Pacientes , Valor Preditivo dos Testes , Estudos Prospectivos , Indução de Remissão , Doenças Reumáticas/diagnóstico , Doenças Reumáticas/imunologia , Doenças Reumáticas/microbiologia , Ribotipagem , Fatores de Tempo , Resultado do Tratamento , Inibidores do Fator de Necrose Tumoral/efeitos adversos , Fator de Necrose Tumoral alfa/imunologia
12.
Sci Rep ; 9(1): 7904, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133639

RESUMO

Pyrrolone-fused benzosuberene (PBS) compounds were semi-synthesized from α,ß,γ-Himachalenes extracted from the essential oil of Cedrus deodara following amino-vinyl-bromide substituted benzosuberenes as intermediates. These PBSs compounds classified as an attractive source of therapeutics. The α-isoform of PI3K which is a pivotal modulator of PI3K/AKT/mTOR signaling pathway, responsible for neurological disorders like epilepsy, found as a potential target molecule against these 17 semi-synthesized PBS compounds using in silico ligand-based pharmacophore mapping and target screening. The compounds screened using binding affinities, ADMET properties, and toxicity that were accessed by in silico docking simulations and pharmacokinetics profiling. Ultimately two compounds viz., PBS-8 and PBS-9 were selected for further in vivo evaluation using a zebrafish (Danio rerio) model of pentylenetetrazol (PTZ)-induced clonic convulsions. Additionally, gene expression studies performed for the genes of the PI3K/AKT/mTOR pathway which further validated our results. In conclusion, these findings suggested that PBS-8 is a promising candidate that could bedeveloped as a potential antiepileptic.


Assuntos
Anticonvulsivantes/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Cumarínicos/farmacologia , Epilepsia/tratamento farmacológico , Pirróis/farmacologia , Animais , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Cumarínicos/química , Cumarínicos/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Epilepsia/induzido quimicamente , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Pentilenotetrazol/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirróis/química , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
13.
J Neuroinflammation ; 16(1): 111, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138214

RESUMO

BACKGROUND: In a subgroup of patients suffering from progressive multiple sclerosis (MS), which is an inflammation-mediated neurodegenerative disease of the central nervous system (CNS), B cell aggregates were discovered within the meninges. Occurrence of these structures was associated with a more severe disease course and cortical histopathology. We have developed the B cell-dependent MP4-induced experimental autoimmune encephalomyelitis (EAE) as a mouse model to mimic this trait of the human disease. The aim of this study was to determine a potential role of lymphoid tissue inducer (LTi) and TH17 cells in the process of B cell aggregate formation in the MP4 model. METHODS: We performed flow cytometry of cerebellar and splenic tissue of MP4-immunized mice in the acute and chronic stage of the disease to analyze the presence of CD3-CD5-CD4+RORγt+ LTi and CD3+CD5+CD4+RORγt+ TH17 cells. Myelin oligodendrocyte glycoprotein (MOG):35-55-induced EAE was used as B cell-independent control model. We further determined the gene expression profile of B cell aggregates using laser capture microdissection, followed by RNA sequencing. RESULTS: While we were able to detect LTi cells in the embryonic spleen and adult intestine, which served as positive controls, there was no evidence for the existence of such a population in acute or chronic EAE in neither of the two models. Yet, we detected CD3-CD5-CD4-RORγt+ innate lymphoid cells (ILCs) and TH17 cells in the CNS, the latter especially in the chronic stage of MP4-induced EAE. Moreover, we observed a unique gene signature in CNS B cell aggregates compared to draining lymph nodes of MP4-immunized mice and to cerebellum as well as draining lymph nodes of mice with MOG:35-55-induced EAE. CONCLUSION: The absence of LTi cells in the cerebellum suggests that other cells might take over the function as an initiator of lymphoid tissue formation in the CNS. Overall, the development of ectopic lymphoid organs is a complex process based on an interplay between several molecules and signals. Here, we propose some potential candidates, which might be involved in the formation of B cell aggregates in the CNS of MP4-immunized mice.


Assuntos
Linfócitos B/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Tecido Linfoide/imunologia , Esclerose Múltipla/imunologia , Células Th17/imunologia , Animais , Linfócitos B/patologia , Agregação Celular/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunidade Inata/imunologia , Tecido Linfoide/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Gravidez , Células Th17/patologia
14.
Pain ; 160(10): 2316-2327, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31145221

RESUMO

In this multicenter cross-sectional study, we determined sensory profiles of patients with (NL-1) and without neuropathic pain (NL-0) after nerve lesion and assessed immune-related systemic gene expression. Patients and matched healthy controls filled in questionnaires and underwent neurological examination, neurophysiological studies, quantitative sensory testing, and blood withdrawal. Neuropathic pain was present in 67/95 (71%) patients (NL-1). Tactile hyperalgesia was the most prominent clinical sign in NL-1 patients (P < 0.05). Questionnaires showed an association between neuropathic pain and the presence of depression, anxiety, and catastrophizing (P < 0.05 to P < 0.01). Neuropathic pain was frequently accompanied by other chronic pain (P < 0.05). Quantitative sensory testing showed ipsilateral signs of small and large fiber impairment compared to the respective contralateral side, with elevated thermal and mechanical detection thresholds (P < 0.001 to P < 0.05) and lowered pressure pain threshold (P < 0.05). Also, more loss of function was found in patients with NL-1 compared to NL-0. Pain intensity was associated with mechanical hyperalgesia (P < 0.05 to P < 0.01). However, quantitative sensory testing did not detect or predict neuropathic pain. Gene expression of peptidylglycine α-amidating monooxygenase was higher in NL patients compared with healthy controls (NL-1, P < 0.01; NL-0, P < 0.001). Also, gene expression of tumor necrosis factor-α was higher in NL-1 patients compared with NL-0 (P < 0.05), and interleukin-1ß was higher, but IL-10 was lower in NL-1 patients compared with healthy controls (P < 0.05 each). Our study reveals that nerve lesion presents with small and large nerve fiber dysfunction, which may contribute to the presence and intensity of neuropathic pain and which is associated with a systemic proinflammatory pattern.


Assuntos
Mediadores da Inflamação/metabolismo , Fibras Nervosas/imunologia , Neuralgia/genética , Neuralgia/imunologia , Medição da Dor/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Catastrofização/diagnóstico , Catastrofização/genética , Catastrofização/imunologia , Estudos de Coortes , Estudos Transversais , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Neuralgia/diagnóstico , Adulto Jovem
15.
Chemistry ; 25(16): 4067-4071, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30730074

RESUMO

Polystyrene-supported palladium (Pd@PS) nanoparticles (NPs) have been used to catalyze the aminocarbonylation of aryl halides with amines using oxalic acid as a CO source for the first-time for the synthesis of amides. Furthermore, o-iodoacetophenones participated in amidation and cyclization reactions to give isoindolinones in a single step following a concerted approach. Oxalic acid has been used as a safe, environmentally benign and operationally simple ex situ sustainable CO source under double-layer-vial (DLV) system for different aminocarbonylation reactions. Catalyst stability under a CO environment is a challenging task, however, Pd@PS was found to be recyclable and applicable for a vast substrate scope avoiding regeneration steps. Easy handling of oxalic acid, additive and base-free CO generation, catalyst stability and effortless catalyst separation from the reaction mixture by filtration and introduce of DLV are the added advantages to make the overall process a sustainable approach.

16.
Front Microbiol ; 9: 1473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050506

RESUMO

Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 µg/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 µg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.

17.
Front Microbiol ; 9: 929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896160

RESUMO

Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coli strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype O104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coli strains which got infected by stx2-encoding lambdoid phages turning the E. coli into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN toward not only stx-phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor (pr) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.

18.
J Neuroinflammation ; 14(1): 148, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738885

RESUMO

BACKGROUND: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). METHODS: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P1 receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. RESULTS: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220+ B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. CONCLUSIONS: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE.


Assuntos
Linfócitos B/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/uso terapêutico , Animais , Antígenos CD19/metabolismo , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Agregação Celular/efeitos dos fármacos , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/induzido quimicamente , ELISPOT , Feminino , Citometria de Fluxo , Adjuvante de Freund/toxicidade , Linfonodos/patologia , Camundongos , Proteína Básica da Mielina/imunologia , Proteína Básica da Mielina/toxicidade , Proteína Proteolipídica de Mielina/imunologia , Proteína Proteolipídica de Mielina/toxicidade , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/toxicidade , Baço/patologia , Fatores de Tempo
19.
Nat Rev Microbiol ; 15(10): 630-638, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28626231

RESUMO

The composition of the intestinal microbiota varies among individuals and throughout development, and is dependent on host and environmental factors. However, although the microbiota is constantly exposed to environmental challenges, its composition and function in an individual are stable against perturbations, as microbial communities are resilient and resistant to change. The maintenance of a beneficial microbiota requires a homeostatic equilibrium within microbial communities, and also between the microorganisms and the intestinal interface of the host. The resilience of the healthy microbiota protects us from dysbiosis-related diseases, such as inflammatory bowel disease (IBD) or metabolic disorder. By contrast, a resilient dysbiotic microbiota may cause disease. In this Opinion article, we propose that microbial resilience has a key role in health and disease. We will discuss the concepts and mechanisms of microbial resilience against dietary, antibiotic or bacteriotherapy-induced perturbations and the implications for human health.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Homeostase/fisiologia , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/microbiologia , Transplante de Microbiota Fecal , Humanos , Intestinos/fisiologia
20.
J Exp Med ; 214(2): 401-422, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28082357

RESUMO

ATG16L1T300A, a major risk polymorphism in Crohn's disease (CD), causes impaired autophagy, but it has remained unclear how this predisposes to CD. In this study, we report that mice with Atg16l1 deletion in intestinal epithelial cells (IECs) spontaneously develop transmural ileitis phenocopying ileal CD in an age-dependent manner, driven by the endoplasmic reticulum (ER) stress sensor IRE1α. IRE1α accumulates in Paneth cells of Atg16l1ΔIEC mice, and humans homozygous for ATG16L1T300A exhibit a corresponding increase of IRE1α in intestinal epithelial crypts. In contrast to a protective role of the IRE1ß isoform, hyperactivated IRE1α also drives a similar ileitis developing earlier in life in Atg16l1;Xbp1ΔIEC mice, in which ER stress is induced by deletion of the unfolded protein response transcription factor XBP1. The selective autophagy receptor optineurin interacts with IRE1α, and optineurin deficiency amplifies IRE1α levels during ER stress. Furthermore, although dysbiosis of the ileal microbiota is present in Atg16l1;Xbp1ΔIEC mice as predicted from impaired Paneth cell antimicrobial function, such structural alteration of the microbiota does not trigger ileitis but, rather, aggravates dextran sodium sulfate-induced colitis. Hence, we conclude that defective autophagy in IECs may predispose to CD ileitis via impaired clearance of IRE1α aggregates during ER stress at this site.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Doença de Crohn/etiologia , Endorribonucleases/fisiologia , Ileíte/etiologia , Proteínas Serina-Treonina Quinases/fisiologia , Fatores Etários , Animais , Autofagia , Estresse do Retículo Endoplasmático , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...