Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Ther Nucleic Acids ; 33: 733-737, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37662969

RESUMO

CRISPR-Cas9-based genome editing technologies, such as base editing, have the potential for clinical translation, but delivering nucleic acids into target cells in vivo is a major obstacle. Viral vectors are widely used but come with safety concerns, while current non-viral methods are limited by low transfection efficiency. Here we describe a new method to deliver CRISPR-Cas9 base editing vectors to the mouse liver using focused ultrasound targeted microbubble destruction (FUTMD). We demonstrate, using the example of cytosine base editing of the Pde3b gene, that FUTMD-mediated delivery of cytosine base editing vectors can introduce stop codons (up to ∼2.5% on-target editing) in mouse liver cells in vivo. However, base editing specificity is less than one might hope with these DNA constructs. Our findings suggest that FUTMD-based gene editing tools can be rapidly and transiently deployed to specific organs and sites, providing a powerful platform for the development of non-viral genome editing therapies. Non-viral delivery also reveals greater off-target base exchange in vivo than in vitro.

3.
Curr Opin Cardiol ; 37(5): 413-418, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880456

RESUMO

PURPOSE OF REVIEW: The ability to edit any genomic sequence has led to a better understanding of gene function and holds promise for the development of therapies for genetic diseases. This review describes prime editing - the latest CRISPR-Cas9 genome editing technology. Prime editing enables precise and accurate genome editing in terminally differentiated, postmitotic cells like cardiomyocytes, paving the way for therapeutic applications for genetic cardiomyopathies. RECENT FINDINGS: Prime editing has been used to precisely insert up to 40 bases, create deletions up to 80 base pairs, and can perform all 12 possible transition and transversion base mutations with lower indels and off-target effects than other genome editing methods. The development of several software tools has simplified the experimental design and led to increased efficiency of the process. Improvements in methods for in-vivo delivery of the prime editing components should enable this technology to be used to edit the genome in patients. SUMMARY: Prime editing has the potential to revolutionize the future of biomedical research and transform cardiovascular medicine. Improved understanding of the prime editing process and developments in agent design, efficacy and delivery will benefit scientists and patients and could be an effective way to cure cardiovascular diseases.


Assuntos
Sistemas CRISPR-Cas , Doenças Cardiovasculares , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Edição de Genes/métodos , Humanos
4.
Eur Heart J ; 43(36): 3477-3489, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35728000

RESUMO

AIMS: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS: Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS: A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.


Assuntos
Cardiomiopatia Dilatada , Terapia de Alvo Molecular , Miócitos Cardíacos , Inibidores de Proteínas Quinases , Serina , Troponina T , Fator 4 Ativador da Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Glucose/metabolismo , Glicina/biossíntese , Glicina/genética , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fosfoglicerato Desidrogenase/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Serina/antagonistas & inibidores , Serina/biossíntese , Serina/genética , Troponina T/genética , Troponina T/metabolismo
5.
Stem Cell Res ; 61: 102754, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325819

RESUMO

Temporal regulation of CRISPRi activity is critical for genetic screens. Here, we present an inducible CRISPRi platform enabling selection of iPSC-derived cardiomyocytes and reversible gene knockdown. We targeted a doxycycline-inducible dCas9-KRAB-mCherry cassette into the AAVS1 locus in an MYL7-mGFP reporter iPSC line. A clone with bi-allelic integration displayed minimally leaky CRISPRi activity and strong expression upon addition of doxycycline in iPSCs, iPSC-derived cardiomyocytes, and multilineage differentiated cells. The CRISPRi activity was validated by targeting the MYOCD gene in iPSC cardiomyocytes. In summary, we developed a robust inducible CRISPRi platform to interrogate gene function in human iPSC-derived cardiomyocytes and other cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Doxiciclina/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transgenes
6.
Stem Cell Res ; 57: 102610, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875545

RESUMO

Prime editing uses the Cas9 nickase fused to a reverse transcriptase to copy a DNA sequence into a specific locus from a 'prime editing' guide RNA (pegRNA), eliminating the need for double-stranded DNA breaks and donor DNA templates. To facilitate prime editing in human induced pluripotent stem cells (iPSCs), we integrated a doxycycline-inducible Prime Editor protein (PE2) into the AAVS1 genomic safe harbor locus. Prime editing of iPSCs resulted in precise insertion of three nucleotides in HEK3 locus with high efficiency, demonstrating the utility of this approach. This engineered cell line can be used to edit a single or multiple genomic loci by introducing a target-specific pegRNA for precise and effective genome editing to facilitate disease modeling and functional genetics studies.

7.
Mol Biol Cell ; 24(21): 3406-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006484

RESUMO

During the budding of coat protein complex II (COPII) vesicles from transitional endoplasmic reticulum (tER) sites, Sec16 has been proposed to play two distinct roles: negatively regulating COPII turnover and organizing COPII assembly at tER sites. We tested these ideas using the yeast Pichia pastoris. Redistribution of Sec16 to the cytosol accelerates tER dynamics, supporting a negative regulatory role for Sec16. To evaluate a possible COPII organization role, we dissected the functional regions of Sec16. The central conserved domain, which had been implicated in coordinating COPII assembly, is actually dispensable for normal tER structure. An upstream conserved region (UCR) localizes Sec16 to tER sites. The UCR binds COPII components, and removal of COPII from tER sites also removes Sec16, indicating that COPII recruits Sec16 rather than the other way around. We propose that Sec16 does not in fact organize COPII. Instead, regulation of COPII turnover can account for the influence of Sec16 on tER sites.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Pichia/metabolismo , Sítios de Ligação/genética , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Microscopia de Fluorescência , Mutação , Pichia/genética , Ligação Proteica , Transporte Proteico/genética , Técnicas do Sistema de Duplo-Híbrido
8.
PLoS Genet ; 7(4): e1002058, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22103005

RESUMO

The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Candida albicans is regulated by a variety of signaling pathways. How these pathways interact to orchestrate morphogenesis, however, has not been as well characterized. To address this question and to identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM) pathway during filamentation, we report the first large-scale genetic interaction screen in C. albicans.Our strategy for this screen was based on the concept of complex haploinsufficiency (CHI). A heterozygous mutant of CBK1(cbk1Δ/CBK1), a key RAM pathway protein kinase, was subjected to transposon-mediated, insertional mutagenesis. The resulting double heterozygous mutants (6,528 independent strains) were screened for decreased filamentation on SpiderMedium (SM). From the 441 mutants showing altered filamentation, 139 transposon insertion sites were sequenced,yielding 41 unique CBK1-interacting genes. This gene set was enriched in transcriptional targets of Ace2 and, strikingly, the cAMP-dependent protein kinase A (PKA) pathway, suggesting an interaction between these two pathways. Further analysis indicates that the RAM and PKA pathways co-regulate a common set of genes during morphogenesis and that hyperactivation of the PKA pathway may compensate for loss of RAM pathway function. Our data also indicate that the PKA­regulated transcription factor Efg1 primarily localizes to yeast phase cells while the RAM­pathway regulated transcription factor Ace2 localizes to daughter nuclei of filamentous cells, suggesting that Efg1 and Ace2 regulate a common set of genes at separate stages of morphogenesis. Taken together, our observations indicate that CHI­based screening is a useful approach to genetic interaction analysis in C. albicans and support a model in which these two pathways regulate a common set of genes at different stages of filamentation.


Assuntos
Candida albicans/genética , Regulação Fúngica da Expressão Gênica , Haploinsuficiência , Morfogênese , Candida albicans/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Biblioteca Genômica , Heterozigoto , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Mutagênese Insercional , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Methods Mol Biol ; 765: 207-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21815095

RESUMO

Transposon mutagenesis is an effective method for generating large sets of random mutations in target DNA, with applicability toward numerous types of genetic screens in prokaryotes, single-celled eukaryotes, and metazoans alike. Relative to methods of random mutagenesis by chemical/UV treatment, transposon insertions can be easily identified in mutants with phenotypes of interest. The construction of transposon insertion mutants is also less labor-intensive on a genome-wide scale than methods for targeted gene replacement, although transposon insertions are not precisely targeted to a specific residue, and thus coverage of the target DNA can be problematic. The collective advantages of transposon mutagenesis have been well demonstrated in studies of the budding yeast Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans, as transposon mutagenesis has been used extensively for phenotypic screens in both yeasts. Consequently, we present here protocols for the generation and utilization of transposon-insertion DNA libraries in S. cerevisiae and C. albicans. Specifically, we present methods for the large-scale introduction of transposon insertion alleles in a desired strain of S. cerevisiae. Methods are also presented for transposon mutagenesis of C. albicans, encompassing both the construction of the plasmid-based transposon-mutagenized DNA library and its introduction into a desired strain of Candida. In total, these methods provide the necessary information to implement transposon mutagenesis in yeast, enabling the construction of large sets of identifiable gene disruption mutations, with particular utility for phenotypic screening in nonstandard genetic backgrounds.


Assuntos
Candida albicans/genética , Elementos de DNA Transponíveis/genética , Genoma Fúngico/genética , Mutagênese Insercional/genética , Saccharomyces cerevisiae/genética
10.
Yeast ; 25(8): 577-94, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18668531

RESUMO

Protein localization is tightly linked with function, such that the subcellular distribution of a protein serves as an important control point regulating activity. Exploiting this regulatory mechanism, we present here a general approach by which protein location, and hence function, may be controlled on demand in the budding yeast. In this system a small molecule, rapamycin, is used to temporarily recruit a strong cellular address signal to the target protein, placing subcellular localization under control of the selective chemical stimulus. The kinetics of this system are rapid: rapamycin-directed nucleo-cytoplasmic transport is evident 10-12 min post-treatment and the process is reversible upon removal of rapamycin. Accordingly, we envision this platform as a promising approach for the systematic construction of conditional loss-of-function mutants. As proof of principle, we used this system to direct nuclear export of the essential heat shock transcription factor Hsf1p, thereby mimicking the cell-cycle arrest phenotype of an hsf1 temperature-sensitive mutant. Our drug-induced localization platform also provides a method by which protein localization can be uncoupled from endogenous cell signalling events, addressing the necessity or sufficiency of a given localization shift for a particular cell process. To illustrate, we directed the nuclear import of the calcineurin-dependent transcription factor Crz1p in the absence of native stimuli; this analysis directly substantiates that nuclear translocation of this protein is insufficient for its transcriptional activity. In total, this technology represents a powerful method for the generation of conditional alleles and directed mislocalization studies in yeast, with potential applicability on a genome-wide scale.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fenótipo , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Sirolimo/farmacocinética , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo
11.
Autophagy ; 4(6): 792-800, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18497569

RESUMO

Plasmid-based collections of fluorescent protein fusions are valuable and versatile resources, facilitating systematic studies of protein localization in multiple genetic backgrounds. At present, however, few such collections exist for the analysis of protein localization in any organism. To address this deficiency, we present here a plasmid-based set of resources for the analysis of protein localization in the budding yeast. Specifically, we constructed a suite of low-copy destination vectors for recombination-based cloning of yeast genes as fluorescent protein fusions. We cloned a set of 384 yeast genes encoding kinases, transcription factors and signaling proteins as "recombination-ready" cassettes; by Gateway cloning, these genes with native promoters can be easily introduced into the destination vectors described above, generating carboxy-terminal fusions to fluorescent proteins. Using these reagents, we constructed a subcollection of 276 genes encoding carboxy-terminal fusions to yellow fluorescent protein (vYFP). This collection encompasses 14 autophagy-related (ATG) genes, and we localized these Atgp-vYFP chimeras during rapamycin-induced autophagy. To illustrate further the utility of this collection as a tool in exploring the functions and interactions of proteins in a pathway, we localized a subset of these Atg-vYFP chimeras in a strain deleted for the scaffolding protein Atg11p. In addition, we validated previous results identifying the integral membrane protein Atg9p at the pre-autophagosomal structure upon overexpression of ATG11 and upon deletion of ATG1. Collectively, this plasmid-based resource of yeast gene-vYFP fusions provides an initial toolkit for a variety of systematic and large-scale localization studies exploring pathway biology in the budding yeast.


Assuntos
Autofagia/fisiologia , Proteínas Luminescentes/metabolismo , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antifúngicos/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Proteínas Luminescentes/genética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/metabolismo
12.
Mol Biol Cell ; 19(7): 2708-17, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18417610

RESUMO

The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling modules, wherein yeast cells form interconnected and elongated chains. Because standard strains of yeast are nonfilamentous, we constructed a unique set of 125 kinase-yellow fluorescent protein chimeras in the filamentous Sigma1278b strain for this study. In total, we identified six cytoplasmic kinases (Bcy1p, Fus3p, Ksp1p, Kss1p, Sks1p, and Tpk2p) that localize predominantly to the nucleus during filamentous growth. These kinases form part of an interdependent, localization-based regulatory network: deletion of each individual kinase, or loss of kinase activity, disrupts the nuclear translocation of at least two other kinases. In particular, this study highlights a previously unknown function for the kinase Ksp1p, indicating the essentiality of its nuclear translocation during yeast filamentous growth. Thus, the localization of Ksp1p and the other kinases identified here is tightly controlled during filamentous growth, representing an overlooked regulatory component of this stress response.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/química , Proteínas de Saccharomyces cerevisiae/química , Transporte Ativo do Núcleo Celular , Alelos , Proteínas de Bactérias/química , Núcleo Celular/metabolismo , AMP Cíclico/metabolismo , Citoplasma/enzimologia , Proteínas Fúngicas/química , Proteínas Luminescentes/química , Sistema de Sinalização das MAP Quinases , Modelos Genéticos , Fenótipo , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/fisiologia , Transdução de Sinais
13.
Comb Chem High Throughput Screen ; 10(8): 618-34, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18045076

RESUMO

The budding yeast Saccharomyces cerevisiae is well recognized as a preferred eukaryote for the development of genomic technologies and approaches. Accordingly, a sizeable complement of genomic resources has been developed in yeast, and this genomic foundation is now informing a wide variety of disciplines. In particular, yeast genomic methodologies are gaining an expanding foothold in drug development studies, most notably as a preliminary tool towards drug target identification. In this review, we highlight many applications of yeast genomics in the identification of targeted genes and pathways of small molecules or therapeutic drugs. The applicability of genome-wide resources of yeast disruption and deletion mutants for drug-sensitivity/resistance screening is presented here, along with a summary of microarray technologies for drug-based transcriptional profiling and synthetic interaction mapping. Applications of protein-interaction traps for potential drug target identification are also considered. Collectively, this overview of yeast genomics emphasizes the growing intersection between high-throughput model organism biology and medicinal chemistry an intersection promising tangible advances for both academic and pharmaceutical fields alike.


Assuntos
Técnicas de Química Combinatória , Sistemas de Liberação de Medicamentos/métodos , Genômica , Saccharomyces cerevisiae/genética , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Genoma Fúngico , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...