Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2107: 233-251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31893450

RESUMO

Transposable element (TE) marker system was developed considering the useful properties of the transposable elements such as their large number in the animal and plant genomes, high rate of insertion polymorphism, and ease of detection. Various methods have been employed for developing a large number of TE markers in several crop plants for genomics studies. Here we describe some of these methods including the recent whole genome search. We also review the application of TE markers in molecular breeding.


Assuntos
Produtos Agrícolas/genética , Embaralhamento de DNA/métodos , Elementos de DNA Transponíveis , Marcadores Genéticos , Melhoramento Vegetal/métodos , Polimorfismo Genético
2.
BMC Res Notes ; 13(1): 20, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910887

RESUMO

OBJECTIVE: Low DNA sequence polymorphism despite enormous phenotypic variations in peanut indicates the possible role of epigenetic variations. An attempt was made to analyze genome-wide DNA methylation pattern and its influence on gene expression across 11 diverse genotypes of peanut. RESULTS: The genotypes were subjected to bisulfite sequencing after 21 days of sowing (DAS). CHG regions showed the highest (30,537,376) DNA methylation followed by CpG (30,356,066) and CHH (15,993,361) across 11 genotypes. The B sub-genome exhibited higher DNA methylation sites (46,294,063) than the A sub-genome (30,415,166). Overall, the DNA methylation was more frequent in inter-genic regions than in the genic regions. The genes showing altered methylation and expression between the parent (TMV 2) and its EMS-derived mutant (TMV 2-NLM) were identified. Foliar disease resistant genotypes showed significant differential DNA methylation at 766 sites corresponding to 25 genes. Of them, two genes (Arahy.1XYC2X on chromosome 01 and Arahy.00Z2SH on chromosome 17) coding for senescence-associated protein showed differential expression with resistant genotypes recording higher fragments per kilobase of transcript per million mapped reads (FPKM) at their epialleles. Overall, the study indicated the variation in the DNA methylation pattern among the diverse genotypes of peanut and its influence of gene expression.


Assuntos
Alelos , Arachis/genética , Arachis/imunologia , Metilação de DNA/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética
3.
BMC Res Notes ; 11(1): 10, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310707

RESUMO

OBJECTIVE: In peanut, the DNA polymorphism is very low despite enormous phenotypic variations. This limits the use of genomics-assisted breeding to enhance peanut productivity. This study aimed to develop and validate new AhMITE1 and cleaved amplified polymorphic sequences (CAPS) markers. RESULTS: In total, 2957 new AhMITE1 markers were developed in addition to identifying 465 already reported markers from the whole genome re-sequencing data (WGRS) of 33 diverse genotypes of peanut. The B sub-genome (1620) showed more number of markers than the A sub-genome (1337). Distribution also varied among the chromosomes of both the sub-genomes. Further, 52.6% of the markers were from genic regions; where 31.0% were from intronic regions and 5.2% were from exonic regions. Of the 343 randomly selected markers, 82.2% showed amplification validation, with up to 35.5% polymorphism. From the SNPs on the A03, B01, B02 and B03 chromosomes, 11,730 snip-SNPs (potential CAPS sites) were identified, and 500 CAPS markers were developed from chromosome A03. Of these markers, 30.0% showed validation and high polymorphism. This study demonstrated the potential of the WGRS data to develop AhMITE1 and CAPS markers, which showed high level of validation and polymorphism. These marker resources will be useful for various genetic studies and mapping in peanut.


Assuntos
Arachis/genética , DNA de Plantas/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Polimorfismo Genético/genética , Análise de Sequência de DNA/métodos
4.
PLoS One ; 12(10): e0186113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29040293

RESUMO

A mapping population of recombinant inbred lines (RILs) derived from TMV 2 and its mutant, TMV 2-NLM was employed for mapping important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut. Single nucleotide polymorphism and copy number variation using RAD-Sequencing data indicated very limited polymorphism between TMV 2 and TMV 2-NLM. But phenotypically they differed significantly for many taxonomic and productivity traits. Also, the RIL population showed significant variation for a few additional agronomic traits. A genetic linkage map of 1,205.66 cM was constructed using 91 genic and non-genic Arachis hypogaea transposable element (AhTE) markers. Using single marker analysis and QTL analysis, the markers with high phenotypic variance explained (PVE) were identified for branching pattern (32.3%), number of primary and secondary branches (19.9% and 28.4%, respectively), protein content (26.4%), days to 50% flowering (22.0%), content of oleic acid (15.1%), test weight (13.6%) and pod width (12.0%). Three genic markers (AhTE0357, AhTE0391, AhTE0025) with Arachis hypogaea miniature inverted-repeat transposable element (AhMITE1) activity in the genes Araip.TG1BL (B02 chromosome), Aradu.7N61X (A09 chromosome) and Aradu.7065G (A07 chromosome), respectively showed strong linkage with these taxonomic, productivity and quality traits. Since TMV 2 and TMV 2-NLM differed subtly at DNA level, the background noise in detecting the marker-trait associations was minimum; therefore, the markers identified in this study for the taxonomic and productivity traits may be significant and useful in peanut molecular breeding.


Assuntos
Arachis/genética , Elementos de DNA Transponíveis/genética , Marcadores Genéticos/genética , Locos de Características Quantitativas/genética , Arachis/crescimento & desenvolvimento , Cruzamento , Mapeamento Cromossômico , Classificação , Ligação Genética , Genoma de Planta , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
5.
Mol Breed ; 30(2): 773-788, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22924018

RESUMO

Late leaf spot (LLS) and rust have the greatest impact on yield losses worldwide in groundnut (Arachis hypogaea L.). With the objective of identifying tightly linked markers to these diseases, a total of 3,097 simple sequence repeats (SSRs) were screened on the parents of two recombinant inbred line (RIL) populations, namely TAG 24 × GPBD 4 (RIL-4) and TG 26 × GPBD 4 (RIL-5), and segregation data were obtained for 209 marker loci for each of the mapping populations. Linkage map analysis of the 209 loci resulted in the mapping of 188 and 181 loci in RIL-4 and RIL-5 respectively. Using 143 markers common to the two maps, a consensus map with 225 SSR loci and total map distance of 1,152.9 cM was developed. Comprehensive quantitative trait locus (QTL) analysis detected a total of 28 QTL for LLS and 15 QTL for rust. A major QTL for LLS, namely QTL(LLS)01 (GM1573/GM1009-pPGPseq8D09), with 10.27-62.34% phenotypic variance explained (PVE) was detected in all the six environments in the RIL-4 population. In the case of rust resistance, in addition to marker IPAHM103 identified earlier, four new markers (GM2009, GM1536, GM2301 and GM2079) showed significant association with the major QTL (82.96% PVE). Localization of 42 QTL for LLS and rust on the consensus map identified two candidate genomic regions conferring resistance to LLS and rust. One region present on linkage group AhXV contained three QTL each for LLS (up to 67.98% PVE) and rust (up to 82.96% PVE). The second candidate genomic region contained the major QTL with up to 62.34% PVE for LLS. Molecular markers associated with the major QTL for resistance to LLS and rust can be deployed in molecular breeding for developing groundnut varieties with enhanced resistance to foliar diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9661-z) contains supplementary material, which is available to authorized users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...