Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116558, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850702

RESUMO

The Multidrug and toxic compound extrusion (MATE) and aluminium activated malate transporter (ALMT) gene families are involved in response to aluminium (Al) stress. In this study, we identified 48 MATE and 14 ALMT gene families in Vigna radiata genome and classified into 5 (MATE) and 3 (ALMT) clades by phylogenetic analysis. All the VrMATE and VrALMT genes were distributed across mungbean chromosomes. Tandem duplication was the main driving force for evolution and expansion of MATE gene family. Collinearity of mungbean with soybean indicated that MATE gene family is closely linked to Glycine max. Eight MATE transporters in clade 2 were found to be associated with previously characterized Al tolerance related MATEs in various plant species. Citrate exuding motif (CEM) was present in seven VrMATEs of clade 2. Promoter analysis revealed abundant plant hormone and stress responsive cis-elements. Results from quantitative real time-polymerase chain reaction (qRT-PCR) revealed that VrMATE19, VrMATE30 and VrALMT13 genes were markedly up-regulated at different time points under Al stress. Overall, this study offers a new direction for further molecular characterization of the MATE and ALMT genes in mungbean for Al tolerance.


Assuntos
Alumínio , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Vigna , Alumínio/toxicidade , Vigna/genética , Vigna/efeitos dos fármacos , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Genoma de Planta , Regiões Promotoras Genéticas
2.
Plant Physiol Biochem ; 211: 108710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735154

RESUMO

Adenosine triphosphate-binding cassette transporters (ABC transporters) are involved in regulating plant growth, development and tolerance to environmental stresses. In this study, a total of 138 ABC transporter genes were identified in the lentil genome that were classified into eight subfamilies. Four lentil ABC transporters from subfamily B and I were clustered together with the previously characterized ABC transporter proteins related to aluminium (Al) detoxification. Lentil ABC transporter genes were distributed across the chromosomes. Tandem duplication was the main driving force for expansion of the ABC gene family. Collinearity of lentil with soybean indicated that ABC gene family is closely linked to Glycine max. ABC genes in the same subfamily showed similar gene structure and conserved motifs. The ABC promoter regions harboured a large number of plant hormones and multiple stress responsive cis-regulatory elements. The qRT-PCR showed that ABC genes had varied expression in roots of lentil at different time points under Al stress. This is the first report on genome wide identification and expression analyses of genes encoding ABC transporter genes in lentil which has provided in-depth insight for future research on evolution and elucidation of molecular mechanisms for aluminium tolerance.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Alumínio , Regulação da Expressão Gênica de Plantas , Lens (Planta) , Proteínas de Plantas , Estresse Fisiológico , Lens (Planta)/genética , Lens (Planta)/metabolismo , Lens (Planta)/efeitos dos fármacos , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Família Multigênica , Perfilação da Expressão Gênica , Filogenia , Regiões Promotoras Genéticas/genética
3.
Front Vet Sci ; 10: 1160486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252384

RESUMO

The milk, meat, skins, and draft power of domestic water buffalo (Bubalus bubalis) provide substantial contributions to the global agricultural economy. The world's water buffalo population is primarily found in Asia, and the buffalo supports more people per capita than any other livestock species. For evaluating the workflow, output rate, and completeness of transcriptome assemblies within and between reference-free (RF) de novo transcriptome and reference-based (RB) datasets, abundant bioinformatics studies have been carried out to date. However, comprehensive documentation of the degree of consistency and variability of the data produced by comparing gene expression levels using these two separate techniques is lacking. In the present study, we assessed the variations in the number of differentially expressed genes (DEGs) attained with RF and RB approaches. In light of this, we conducted a study to identify, annotate, and analyze the genes associated with four economically important traits of buffalo, viz., milk volume, age at first calving, post-partum cyclicity, and feed conversion efficiency. A total of 14,201 and 279 DEGs were identified in RF and RB assemblies. Gene ontology (GO) terms associated with the identified genes were allocated to traits under study. Identified genes improve the knowledge of the underlying mechanism of trait expression in water buffalo which may support improved breeding plans for higher productivity. The empirical findings of this study using RNA-seq data-based assembly may improve the understanding of genetic diversity in relation to buffalo productivity and provide important contributions to answer biological issues regarding the transcriptome of non-model organisms.

4.
Int J Genomics ; 2023: 1774764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033711

RESUMO

Climate change has become a major source of concern, particularly in agriculture, because it has a significant impact on the production of economically important crops such as wheat, rice, and maize. In the present study, an attempt has been made to identify differentially expressed heat stress-responsive long non-coding RNAs (lncRNAs) in the wheat genome using publicly available wheat transcriptome data (24 SRAs) representing two conditions, namely, control and heat-stressed. A total of 10,965 lncRNAs have been identified and, among them, 153, 143, and 211 differentially expressed transcripts have been found under 0 DAT, 1 DAT, and 4 DAT heat-stress conditions, respectively. Target prediction analysis revealed that 4098 lncRNAs were targeted by 119 different miRNA responses to a plethora of environmental stresses, including heat stress. A total of 171 hub genes had 204 SSRs (simple sequence repeats), and a set of target sequences had SNP potential as well. Furthermore, gene ontology analysis revealed that the majority of the discovered lncRNAs are engaged in a variety of cellular and biological processes related to heat stress responses. Furthermore, the modeled three-dimensional (3D) structures of hub genes encoding proteins, which had an appropriate range of similarity with solved structures, provided information on their structural roles. The current study reveals many elements of gene expression regulation in wheat under heat stress, paving the way for the development of improved climate-resilient wheat cultivars.

5.
Front Genet ; 13: 942079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035144

RESUMO

Market class, cooking time, quality, and milled grain yield are largely influenced by the seed size and shape of the lentil (Lens culinaris Medik.); thus, they are considered to be important quality traits. To unfold the pathways regulating seed size in lentils, a transcriptomic approach was performed using large-seeded (L4602) and small-seeded (L830) genotypes. The study has generated nearly 375 million high-quality reads, of which 98.70% were properly aligned to the reference genome. Among biological replicates, very high similarity in fragments per kilobase of exon per million mapped fragments values (R > 0.9) showed the consistency of RNA-seq results. Various differentially expressed genes associated mainly with the hormone signaling and cell division pathways, transcription factors, kinases, etc. were identified as having a role in cell expansion and seed growth. A total of 106,996 unigenes were used for differential expression (DE) analysis. String analysis identified various modules having certain key proteins like Ser/Thr protein kinase, seed storage protein, DNA-binding protein, microtubule-associated protein, etc. In addition, some growth and cell division-related micro-RNAs like miR3457 (cell wall formation), miR1440 (cell proliferation and cell cycles), and miR1533 (biosynthesis of plant hormones) were identified as having a role in seed size determination. Using RNA-seq data, 5254 EST-SSR primers were generated as a source for future studies aiming for the identification of linked markers. In silico validation using Genevestigator® was done for the Ser/Thr protein kinase, ethylene response factor, and Myb transcription factor genes. It is of interest that the xyloglucan endotransglucosylase gene was found differentially regulated, suggesting their role during seed development; however, at maturity, no significant differences were recorded for various cell wall parameters including cellulose, lignin, and xylose content. This is the first report on lentils that has unfolded the key seed size regulating pathways and unveiled a theoretical way for the development of lentil genotypes having customized seed sizes.

6.
Front Genet ; 13: 859676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450212

RESUMO

The pathogenic fungus, Bipolaris sorokiniana, that causes spot blotch (SB) disease of wheat, is a major production constraint in the Eastern Gangetic Plains of South Asia and other warm, humid regions of the world. A recombinant inbred line population was developed and phenotyped at three SB-prone locations in India. The single nucleotide polymorphism (SNP) for SB resistance was identified using a bulked segregant RNA-Seq-based approach, referred to as "BSR-Seq." Transcriptome sequencing of the resistant parent (YS#24), the susceptible parent (YS#58), and their resistant and susceptible bulks yielded a total of 429.67 million raw reads. The bulk frequency ratio (BFR) of SNPs between the resistant and susceptible bulks was estimated, and selection of SNPs linked to resistance was done using sixfold enrichments in the corresponding bulks (BFR >6). With additional filtering criteria, the number of transcripts was further reduced to 506 with 1055 putative polymorphic SNPs distributed on 21 chromosomes of wheat. Based on SNP enrichment on chromosomal loci, five transcripts were found to be associated with SB resistance. Among the five SB resistance-associated transcripts, four were distributed on the 5B chromosome with putative 52 SNPs, whereas one transcript with eight SNPs was present on chromosome 3B. The SNPs linked to the trait were exposed to a tetra-primer ARMS-PCR assay, and an SNP-based allele-specific marker was identified for SB resistance. The in silico study of these five transcripts showed homology with pathogenesis-related genes; the metabolic pathway also exhibits similar results, suggesting their role in the plant defense mechanism.

7.
Genomics ; 114(3): 110356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364267

RESUMO

Jack (Artocarpus heterophyllus) is a multipurpose fruit-tree species with minimal genomic resources. The study reports developing comprehensive transcriptome data containing 80,411 unigenes with an N50 value of 1265 bp. We predicted 64,215 CDSs from the unigenes and annotated and functionally categorized them into the biological process (23,230), molecular function (27,149), and cellular components (17,284). From 80,411 unigenes, we discovered 16,853 perfect SSRs with 192 distinct repeat motif types reiterating 4 to 22 times. Besides, we identified 2741 TFs from 69 TF families, 53 miRNAs from 19 conserved miRNA families, 25,953 potential lncRNAs, and placed three functional eTMs in different lncRNA-miRNA pairs. The regulatory networks involving genes, TFs, and miRNAs identified several regulatory and regulated nodes providing insight into miRNAs' gene associations and transcription factor-mediated regulation. The comparison of expression patterns of some selected miRNAs vis-à-vis their corresponding target genes showed an inverse relationship indicating the possible miRNA-mediated regulation of the genes.


Assuntos
Artocarpus , MicroRNAs , Humanos , Transcriptoma , Artocarpus/genética , MicroRNAs/genética , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Anotação de Sequência Molecular
8.
Front Genet ; 13: 842868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281847

RESUMO

Cereals are the most important food crops and are considered key contributors to global food security. Loss due to abiotic stresses in cereal crops is limiting potential productivity in a significant manner. The primary reasons for abiotic stresses are abrupt temperature, variable rainfall, and declining nutrient status of the soil. Varietal development is the key to sustaining productivity under influence of multiple abiotic stresses and must be studied in context with genomics and molecular breeding. Recently, advances in a plethora of Next Generation Sequencing (NGS) based methods have accelerated the enormous genomic data generation associated with stress-induced transcripts such as microarray, RNAseq, Expressed Sequenced Tag (ESTs), etc. Many databases related to microarray and RNA-seq based transcripts have been developed and profusely utilized. However, an abundant amount of transcripts related to abiotic stresses in various cereal crops arising from EST technology are available but still remain underutilized in absence of a consolidated database. In this study, an attempt has been made with a primary goal to integrate, analyse, and characterise the available resources of ESTs responsive to abiotic stresses in major cereals. The developed CerealESTdb presents a customisable search in two different ways in the form of searchable content for easy access and potential use. This database comprises ESTs from four major cereal crops, namely rice (Oryza sativa L.), wheat (Triticum aestivum L.), sorghum (Sorghum bicolour L.), and maize (Zea mays L.), under a set of abiotic stresses. The current statistics of this cohesive database consists of 55,826 assembled EST sequences, 51,791 predicted genes models, and their 254,609 gene ontology terms including extensive information on 1,746 associated metabolic pathways. We anticipate that developed CerealESTdb will be helpful in deciphering the knowledge of complex biological phenomena under abiotic stresses to accelerate the molecular breeding programs towards the development of crop cultivars resilient to abiotic stresses. The CerealESTdb is publically available with the URL http://cabgrid.res.in/CerealESTDb.

9.
Genes (Basel) ; 12(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672641

RESUMO

Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inoculation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the differential disease response. The defense responsive genes are involved mainly in defense pathways namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell wall modification. The common differentially expressed genes in both the cultivars were defense responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxidases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our study shows that panicle blast resistance is a complex phenomenon contributed by early defense response through ROS production and detoxification, MAPK and LRR signaling, accumulation of antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the entry and spread of the fungi. The present investigation provided valuable candidate genes that can unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.


Assuntos
Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma , Biologia Computacional/métodos , Ontologia Genética , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Biológicos , Fenótipo , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Transdução de Sinais
10.
PLoS One ; 16(1): e0244593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434234

RESUMO

Yellow Mosaic Disease (YMD) in mungbean [Vigna radiata (L.) R. Wilczek] is one of the most damaging diseases in Asia. In the northern part of India, the YMD is caused by Mungbean Yellow Mosaic India Virus (MYMIV), while in southern India this is caused by Mungbean Yellow Mosaic Virus (MYMV). The molecular mechanism of YMD resistance in mungbean remains largely unknown. In this study, RNA-seq analysis was conducted between a resistant (PMR-1) and a susceptible (Pusa Vishal) mungbean genotype under infected and control conditions to understand the regulatory network operating between mungbean-YMV. Overall, 76.8 million raw reads could be generated in different treatment combinations, while mapping rate per library to the reference genome varied from 86.78% to 93.35%. The resistance to MYMIV showed a very complicated gene network, which begins with the production of general PAMPs (pathogen-associated molecular patterns), then activation of various signaling cascades like kinases, jasmonic acid (JA) and brassinosteroid (BR), and finally the expression of specific genes (like PR-proteins, virus resistance and R-gene proteins) leading to resistance response. The function of WRKY, NAC and MYB transcription factors in imparting the resistance against MYMIV could be established. The string analysis also revealed the role of proteins involved in kinase, viral movement and phytoene synthase activity in imparting YMD resistance. A set of novel stress-related EST-SSRs are also identified from the RNA-Seq data which may be used to find the linked genes/QTLs with the YMD resistance. Also, 11 defence-related transcripts could be validated through quantitative real-time PCR analysis. The identified gene networks have led to an insight about the defence mechanism operating against MYMIV infection in mungbean which will be of immense use to manage the YMD resistance in mungbean.


Assuntos
Begomovirus/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vigna/genética , Vigna/virologia , Resistência à Doença , Redes Reguladoras de Genes , RNA-Seq , Transcriptoma
11.
Genes (Basel) ; 13(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35052429

RESUMO

Dry root rot (Rhizoctonia bataticola) is an important disease of lentils (Lens culinaris Medik.).To gain an insight into the molecular aspects of host-pathogen interactions, the RNA-seq approach was used in lentils following inoculation with R.bataticola. The RNA-Seq has generated >450 million high-quality reads (HQRs) and nearly 96.97% were properly aligned to the reference genome. Very high similarity in FPKM (fragments per kilobase of exon per million mapped fragments) values (R > 0.9) among biological replicates showed the consistency of the RNA-Seq results. The study revealed various DEGs (differentially expressed genes) that were associated with changes in phenolic compounds, transcription factors (TFs), antioxidants, receptor kinases, hormone signals which corresponded to the cell wall modification enzymes, defense-related metabolites, and jasmonic acid (JA)/ethylene (ET) pathways. Gene ontology (GO) categorization also showed similar kinds of significantly enriched similar GO terms. Interestingly, of the total unigenes (42,606), 12,648 got assembled and showed significant hit with Rhizoctonia species. String analysis also revealed the role of various disease responsive proteins viz., LRR family proteins, LRR-RLKs, protein kinases, etc. in the host-pathogen interaction. Insilico validation analysis was performed using Genevestigator® and DEGs belonging to six major defense-response groups viz., defense-related enzymes, disease responsive genes, hormones, kinases, PR (pathogenesis related) proteins, and TFs were validated. For the first time some key miRNA targets viz. miR156, miR159, miR167, miR169, and miR482 were identified from the studied transcriptome, which may have some vital role in Rhizoctonia-based responses in lentils. The study has revealed the molecular mechanisms of the lentil/R.bataticola interactions and also provided a theoretical approach for the development of lentil genotypes resistant to R.bataticola.


Assuntos
Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno , Lens (Planta)/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Rhizoctonia/fisiologia , Transcriptoma , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Lens (Planta)/genética , Lens (Planta)/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , RNA-Seq/métodos
12.
Genomics ; 112(5): 3571-3578, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32320820

RESUMO

Single Nucleotide Polymorphism (SNP) is one of the important molecular markers widely used in animal breeding program for improvement of any desirable genetic traits. Considering this, the present study was carried out to identify, annotate and analyze the SNPs related to four important traits of buffalo viz. milk volume, age at first calving, post-partum cyclicity and feed conversion efficiency. We identified 246,495, 168,202, 74,136 and 194,747 genome-wide SNPs related to mentioned traits, respectively using ddRAD sequencing technique based on 85 samples of Murrah Buffaloes. Distribution of these SNPs were highest (61.69%) and lowest (1.78%) in intron and exon regions, respectively. Under coding regions, the SNPs for the four traits were further classified as synonymous (4697) and non-synonymous (3827). Moreover, Gene Ontology (GO) terms of identified genes assigned to various traits. These characterized SNPs will enhance the knowledge of cellular mechanism for enhancing productivity of water buffalo through molecular breeding.


Assuntos
Búfalos/genética , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Leite , Anotação de Sequência Molecular , Análise de Sequência de DNA
13.
Anim Biotechnol ; 24(1): 25-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23394367

RESUMO

An elucidated genome of domestic livestock river buffalo will contribute enormously to economy and better understanding of genome evolution as well. An attempt is made to obtain genomic information on buffalo, based on total Expressed Sequence Tags (ESTs) of Bubalus bubalis available in public domain. These ESTs were annotated and classified into 15 different functional categories based on their homology to the known proteins. Interestingly, 41.79% of the contigs were found to be buffalo specific novel ESTs with respect to other species used in analysis which needs further studies. Also, 224 pSNPs (putative Single Nucleotide Polymorphism) were detected. This study will provide a home base for further genomic studies of buffalo and comparative studies enabling a starting point for the genome annotation of the organism. Supplementary materials are available for this article online.


Assuntos
Búfalos/genética , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Animais , Frequência do Gene , Genoma , Genômica , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
14.
Bioinformation ; 9(2): 79-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23390350

RESUMO

Heliothis virescens, a polyphagous pest, is one of the most destructive pests of many crops and vegetables. Various insecticides and pesticides are used by agriculturalists to stop the growth and development of this pest. RNA interference is a new area for the management of pests/insects by inhibiting the growth related RNAs. This involves the miRNAs identification and its characterization. In the present study, computational approach is applied to predict putative miRNA candidates along with their possible target(s) in the Heliothis virescens. A total of 63,662 ESTs were downloaded from dbEST database and processed, trimmed and masked through EGassembler. The H. virescens contigs database obtained after assembly was now used to find the putative miRNA candidates by performing a local BLAST with the miRNAs of insects retrieved from miRBase. We have predicted putative miRNA candidates by homology search against all the reported insect miRNAs. These putative miRNAs candidates were further validated and filtered by different features. In addition, we have also attempted to predict the putative targets of these filtered miRNAs, by making use of 3' untranslated regions of mRNAs from B. mori. These miRNAs and their targets in H. virescens will help in improved understanding of molecular mechanisms of miRNA and development of novel and more precise techniques for better understanding some post transcriptional gene silencing.

15.
Artigo em Inglês | MEDLINE | ID: mdl-20886055

RESUMO

Brassicaceae is an important family of the plant kingdom which includes several plants of major economic importance. The Brassica spp. and Arabidopsis share much-conserved colinearity between their genomes which can be exploited for the genomic research in Brassicaceae crops. In this study, 131,286 ESTs of five Brassicaceae species were assembled into unigene contigs and compared with Arabidopsis gene indices. Almost all the unigenes of Brassicaceae species showed high similarities with Arabidopsis genes except those of B. napus, where 90% of unigenes were found similar. A total of 9,699 SSRs were identified in the unigenes. PCR primers were designed based on this information and amplified across species for validation. Functional annotation of unigenes showed that the majority of the genes are present in metabolism and energy functional classes. It is expected that comparative genome analysis between Arabidopsis and related crop species will expedite research in the more complex Brassica genomes. This would be helpful for genomics as well as evolutionary studies, and DNA markers developed can be used for mapping, tagging, and cloning of important genes in Brassicaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...